Home
Class 12
MATHS
If A=[[0, 1, 0], [1, 0, 0], [0, 0, 1]], ...

If `A=[[0, 1, 0], [1, 0, 0], [0, 0, 1]]`, then `A^(-1)=`

A

`2A`

B

`A`

C

`-A`

D

`1`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A \), we will use the formula for the inverse of a 3x3 matrix. The matrix \( A \) is given as: \[ A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 1: Calculate the Determinant of \( A \) The determinant of a 3x3 matrix \( A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \) is calculated as: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A \): - \( a = 0, b = 1, c = 0 \) - \( d = 1, e = 0, f = 0 \) - \( g = 0, h = 0, i = 1 \) Now substituting these values into the determinant formula: \[ \text{det}(A) = 0(0 \cdot 1 - 0 \cdot 0) - 1(1 \cdot 1 - 0 \cdot 0) + 0(1 \cdot 0 - 0 \cdot 0) \] This simplifies to: \[ \text{det}(A) = 0 - 1 + 0 = -1 \] ### Step 2: Find the Adjugate of \( A \) The adjugate of a 3x3 matrix is found by taking the transpose of the cofactor matrix. The cofactor matrix is calculated by finding the determinant of the 2x2 matrices obtained by removing one row and one column from \( A \). Calculating the cofactors: - For \( a_{11} = 0 \): The minor is \( \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \) → cofactor = \( 0 \) - For \( a_{12} = 1 \): The minor is \( \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \) → cofactor = \( 1 \) - For \( a_{13} = 0 \): The minor is \( \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \) → cofactor = \( 0 \) - For \( a_{21} = 1 \): The minor is \( \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \) → cofactor = \( 1 \) - For \( a_{22} = 0 \): The minor is \( \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \) → cofactor = \( 0 \) - For \( a_{23} = 0 \): The minor is \( \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \) → cofactor = \( 0 \) - For \( a_{31} = 0 \): The minor is \( \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \) → cofactor = \( 0 \) - For \( a_{32} = 0 \): The minor is \( \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \) → cofactor = \( -1 \) - For \( a_{33} = 1 \): The minor is \( \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \) → cofactor = \( 1 \) Thus, the cofactor matrix is: \[ \text{Cof}(A) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & -1 & 1 \end{pmatrix} \] Now, taking the transpose gives us the adjugate: \[ \text{adj}(A) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 3: Calculate the Inverse of \( A \) The inverse of a matrix \( A \) is given by: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the determinant and adjugate: \[ A^{-1} = \frac{1}{-1} \cdot \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & 0 & 1 \end{pmatrix} \] This simplifies to: \[ A^{-1} = \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 0 & -1 \end{pmatrix} \] ### Final Result Thus, the inverse of matrix \( A \) is: \[ A^{-1} = \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 0 & -1 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

If A=[[0,0,1] , [0,1,0] , [1,0,0]] then A^6=

If A=[[0,0,1],[0,1,0],[1,0,0]] , show that A^(-1)=A

If A=[(1,-1,0),(1,0,0),(0,0,-1)] , then A^(-1) is

If A=[[1,0,1],[0,1,1],[1,0,0]], then |A| is

If A=[[1,0,0],[0,1,0],[a,b,-1]] and A=A^(-1) then a+b=?

If A=[[1,0,0],[0,1,0],[a,b,-1]] , find A^2

If A=[(1,0,1),(0,0,0),(1,0,1)] , then find |A^(2)| .

If [ [ 1 , 0 , 0 ] , [ 0 ,1 , 0 ] , [ 0 , 0 , 1 ] ] [ [ a ] , [ b ] , [ c ] ] = [ [ 2 ] , [ 1 ] , [ -3 ] ] , then find the value of a + b + c

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. The inverse of the matrix [[x, 0, 0], [0, y, 0], [0, 0, z]] is

    Text Solution

    |

  2. The inverse of the matrix [[2, 0, 0], [0, 1, 0], [0, 0, -1]] is

    Text Solution

    |

  3. If A=[[0, 1, 0], [1, 0, 0], [0, 0, 1]], then A^(-1)=

    Text Solution

    |

  4. The inverse of [[0, 0, 1], [0, 1, 0], [1, 0, 0]] is

    Text Solution

    |

  5. The inverse of the matrix [[1, 0, 0], [2, 1, 0], [3, 3, 1]] is

    Text Solution

    |

  6. The inverse of the matrix [[2, 1, 3], [1, 0, 1], [1, 1, 1]] is

    Text Solution

    |

  7. The inverse of the matrix [[1, 3, 3], [1, 4, 3], [1, 3, 4]] is

    Text Solution

    |

  8. The inverse of the matrix [[3, -2, -1], [-4, 1, -1], [2, 0, 1]] is

    Text Solution

    |

  9. The inverse of the matrix [[1, 0, 0], [3, 3, 0], [5, 2, -1]] is

    Text Solution

    |

  10. If A=[[1, 0, 0], [a, 1, 0], [b, c, 1]], then A^(-1)=

    Text Solution

    |

  11. The inverse of the matrix [[1, 2, 3], [0, 2, 4], [0, 0, 5]] is

    Text Solution

    |

  12. The inverse of the matrix [[1, 2, 3], [1, 1, 5], [2, 4, 7]] is

    Text Solution

    |

  13. The inverse of the matrix [[1, 0, 1], [0, 2, 3], [1, 2, 1]] is

    Text Solution

    |

  14. The inverse of the matrix [[2, -1, 1], [-1, 2, -1], [1, -1, 2]] is

    Text Solution

    |

  15. The inverse of the matrix [[0, 1, 2], [1, 2, 3], [3, 1, 1]] is

    Text Solution

    |

  16. The inverse of the matrix [[2, 0, -1], [5, 1, 0], [0, 1, 3]] is

    Text Solution

    |

  17. The inverse of the matrix [[2, -3, 3], [2, 2, 3], [3, -2, 2]] is

    Text Solution

    |

  18. The inverse of the matrix [[1, 2, -2], [-3, 0, -5], [2, 5, 0]] is

    Text Solution

    |

  19. The inverse of the matrix [[1, 2, -2], [0, -2, 1], [-1, 3, 0]] is

    Text Solution

    |

  20. The inverse of the matrix [[3, 2, 6], [1, 1, 2], [2, 2, 5]] is

    Text Solution

    |