Home
Class 12
MATHS
The inverse of [[0, 0, 1], [0, 1, 0], [1...

The inverse of `[[0, 0, 1], [0, 1, 0], [1, 0, 0]]` is

A

`[[1, 0, 0], [0, 1, 0], [0, 0, 1]]`

B

`[[0, 0, -1], [0, -1, 0], [0, 0, -1]]`

C

`[[0, 0, 1], [0, 1, 0], [1, 0, 0]]`

D

`[[-1, 0, 0], [0, 1, 0], [0, 0, 1]]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of Matrix A To find the inverse of a matrix, we first need to calculate its determinant. The determinant of a 3x3 matrix can be calculated using the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A \): \[ A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \] We can expand the determinant along the first row: \[ \text{det}(A) = 0 \cdot (1 \cdot 0 - 0 \cdot 0) - 0 \cdot (0 \cdot 0 - 1 \cdot 1) + 1 \cdot (0 \cdot 0 - 1 \cdot 1) \] Calculating this gives: \[ \text{det}(A) = 0 - 0 + 1 \cdot (-1) = -1 \] ### Step 2: Check if the Determinant is Non-Zero Since \( \text{det}(A) = -1 \) (which is not zero), the inverse of the matrix exists. ### Step 3: Calculate the Cofactor Matrix Next, we need to find the cofactor matrix \( C \). The cofactor \( C_{ij} \) is calculated by taking the determinant of the submatrix that remains after removing the \( i \)-th row and \( j \)-th column, multiplied by \( (-1)^{i+j} \). Calculating the cofactors: - \( C_{11} = \text{det}\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = 0 \) - \( C_{12} = \text{det}\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} = 0 \) - \( C_{13} = \text{det}\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = -1 \) - \( C_{21} = \text{det}\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = -1 \) - \( C_{22} = \text{det}\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = 0 \) - \( C_{23} = \text{det}\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} = 0 \) - \( C_{31} = \text{det}\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = 0 \) - \( C_{32} = \text{det}\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = 0 \) - \( C_{33} = \text{det}\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} = -1 \) Thus, the cofactor matrix \( C \) is: \[ C = \begin{bmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} \] ### Step 4: Transpose the Cofactor Matrix to Get the Adjoint The adjoint of matrix \( A \) is the transpose of the cofactor matrix: \[ \text{adj}(A) = C^T = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ -1 & 0 & -1 \end{bmatrix} \] ### Step 5: Calculate the Inverse of Matrix A Finally, we can find the inverse of matrix \( A \) using the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the values we have: \[ A^{-1} = \frac{1}{-1} \cdot \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ -1 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix} \] ### Final Answer The inverse of the matrix \( A \) is: \[ A^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

The element of second row and third column in the inverse of [[1, 2, 1], [2, 1, 0], [-1, 0, 1]] is

The element of second row and third column in the inverse of [[1, 2, -3], [0, 1, 2], [0, 0, 1]] is

The inverse of the matrix [[2, 0, 0], [0, 1, 0], [0, 0, -1]] is

the inverse of [[1,a, b],[0,x,0],[ 0, 0, 1]] i s[[1,-a,-b],[0 ,1 ,0],[ 0, 0, 1]] t h e n x=

The inverse of the matrix [[2, 0, -1], [5, 1, 0], [0, 1, 3]] is

The inverse of the matrix [[1, 0, 1], [0, 2, 3], [1, 2, 1]] is

The inverse of the matrix [[1, 0, 0], [2, 1, 0], [3, 3, 1]] is

If A=[[0,0,1] , [0,1,0] , [1,0,0]] then A^6=

The inverse of the matrix [[1, 0, 0], [3, 3, 0], [5, 2, -1]] is

What is the inverse of [{:(0,0,1),(0,1,0),(1,0,0):}] ?

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. The inverse of the matrix [[2, 0, 0], [0, 1, 0], [0, 0, -1]] is

    Text Solution

    |

  2. If A=[[0, 1, 0], [1, 0, 0], [0, 0, 1]], then A^(-1)=

    Text Solution

    |

  3. The inverse of [[0, 0, 1], [0, 1, 0], [1, 0, 0]] is

    Text Solution

    |

  4. The inverse of the matrix [[1, 0, 0], [2, 1, 0], [3, 3, 1]] is

    Text Solution

    |

  5. The inverse of the matrix [[2, 1, 3], [1, 0, 1], [1, 1, 1]] is

    Text Solution

    |

  6. The inverse of the matrix [[1, 3, 3], [1, 4, 3], [1, 3, 4]] is

    Text Solution

    |

  7. The inverse of the matrix [[3, -2, -1], [-4, 1, -1], [2, 0, 1]] is

    Text Solution

    |

  8. The inverse of the matrix [[1, 0, 0], [3, 3, 0], [5, 2, -1]] is

    Text Solution

    |

  9. If A=[[1, 0, 0], [a, 1, 0], [b, c, 1]], then A^(-1)=

    Text Solution

    |

  10. The inverse of the matrix [[1, 2, 3], [0, 2, 4], [0, 0, 5]] is

    Text Solution

    |

  11. The inverse of the matrix [[1, 2, 3], [1, 1, 5], [2, 4, 7]] is

    Text Solution

    |

  12. The inverse of the matrix [[1, 0, 1], [0, 2, 3], [1, 2, 1]] is

    Text Solution

    |

  13. The inverse of the matrix [[2, -1, 1], [-1, 2, -1], [1, -1, 2]] is

    Text Solution

    |

  14. The inverse of the matrix [[0, 1, 2], [1, 2, 3], [3, 1, 1]] is

    Text Solution

    |

  15. The inverse of the matrix [[2, 0, -1], [5, 1, 0], [0, 1, 3]] is

    Text Solution

    |

  16. The inverse of the matrix [[2, -3, 3], [2, 2, 3], [3, -2, 2]] is

    Text Solution

    |

  17. The inverse of the matrix [[1, 2, -2], [-3, 0, -5], [2, 5, 0]] is

    Text Solution

    |

  18. The inverse of the matrix [[1, 2, -2], [0, -2, 1], [-1, 3, 0]] is

    Text Solution

    |

  19. The inverse of the matrix [[3, 2, 6], [1, 1, 2], [2, 2, 5]] is

    Text Solution

    |

  20. The inverse of the matrix [[1, 2, 3], [-1, 1, 2], [1, 2, 4]] is

    Text Solution

    |