Home
Class 12
MATHS
The inverse of the matrix [[1, 3, 3], [1...

The inverse of the matrix `[[1, 3, 3], [1, 4, 3], [1, 3, 4]]` is

A

`[[-7, -3, -3], [-1, 1, 0], [-1, 0, 1]]`

B

`[[7, 3, 3], [-1, 1, 0], [0, 0, -1]]`

C

`[[7, -3, -3], [-1, 1, 0], [-1, 0, 1]]`

D

`[[-7, 3, 3], [-1, 1, 0], [1, 0, -1]]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of Matrix A The determinant of a 3x3 matrix \( A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \) is calculated using the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix: - \( a = 1, b = 3, c = 3 \) - \( d = 1, e = 4, f = 3 \) - \( g = 1, h = 3, i = 4 \) Calculating the determinant: \[ \text{det}(A) = 1(4 \cdot 4 - 3 \cdot 3) - 3(1 \cdot 4 - 3 \cdot 1) + 3(1 \cdot 3 - 4 \cdot 1) \] \[ = 1(16 - 9) - 3(4 - 3) + 3(3 - 4) \] \[ = 1(7) - 3(1) + 3(-1) \] \[ = 7 - 3 - 3 = 1 \] ### Step 2: Check if the Determinant is Non-Zero Since \( \text{det}(A) = 1 \) (which is not zero), the inverse of the matrix exists. ### Step 3: Calculate the Adjoint of Matrix A The adjoint of a matrix is the transpose of its cofactor matrix. We will calculate the cofactor matrix first. #### Cofactor Calculation: 1. **Cofactor \( C_{11} \)**: \[ C_{11} = \text{det}\begin{bmatrix} 4 & 3 \\ 3 & 4 \end{bmatrix} = (4 \cdot 4 - 3 \cdot 3) = 16 - 9 = 7 \] 2. **Cofactor \( C_{12} \)**: \[ C_{12} = -\text{det}\begin{bmatrix} 1 & 3 \\ 1 & 4 \end{bmatrix} = -((1 \cdot 4 - 3 \cdot 1)) = -(4 - 3) = -1 \] 3. **Cofactor \( C_{13} \)**: \[ C_{13} = \text{det}\begin{bmatrix} 1 & 4 \\ 1 & 3 \end{bmatrix} = (1 \cdot 3 - 4 \cdot 1) = 3 - 4 = -1 \] 4. **Cofactor \( C_{21} \)**: \[ C_{21} = -\text{det}\begin{bmatrix} 3 & 3 \\ 3 & 4 \end{bmatrix} = -((3 \cdot 4 - 3 \cdot 3)) = -(12 - 9) = -3 \] 5. **Cofactor \( C_{22} \)**: \[ C_{22} = \text{det}\begin{bmatrix} 1 & 3 \\ 1 & 4 \end{bmatrix} = (1 \cdot 4 - 3 \cdot 1) = 4 - 3 = 1 \] 6. **Cofactor \( C_{23} \)**: \[ C_{23} = -\text{det}\begin{bmatrix} 1 & 3 \\ 1 & 3 \end{bmatrix} = -((1 \cdot 3 - 3 \cdot 1)) = -(3 - 3) = 0 \] 7. **Cofactor \( C_{31} \)**: \[ C_{31} = \text{det}\begin{bmatrix} 3 & 3 \\ 4 & 3 \end{bmatrix} = (3 \cdot 3 - 3 \cdot 4) = 9 - 12 = -3 \] 8. **Cofactor \( C_{32} \)**: \[ C_{32} = -\text{det}\begin{bmatrix} 1 & 3 \\ 1 & 4 \end{bmatrix} = -((1 \cdot 4 - 3 \cdot 1)) = -(4 - 3) = -1 \] 9. **Cofactor \( C_{33} \)**: \[ C_{33} = \text{det}\begin{bmatrix} 1 & 4 \\ 1 & 3 \end{bmatrix} = (1 \cdot 3 - 4 \cdot 1) = 3 - 4 = -1 \] #### Cofactor Matrix: \[ C = \begin{bmatrix} 7 & -1 & -1 \\ -3 & 1 & 0 \\ -3 & -1 & -1 \end{bmatrix} \] #### Adjoint Matrix: Taking the transpose of the cofactor matrix: \[ \text{adj}(A) = \begin{bmatrix} 7 & -3 & -3 \\ -1 & 1 & -1 \\ -1 & 0 & -1 \end{bmatrix} \] ### Step 4: Calculate the Inverse of Matrix A Using the formula for the inverse: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Since \( \text{det}(A) = 1 \): \[ A^{-1} = 1 \cdot \text{adj}(A) = \begin{bmatrix} 7 & -3 & -3 \\ -1 & 1 & -1 \\ -1 & 0 & -1 \end{bmatrix} \] ### Final Answer: The inverse of the matrix \( A \) is: \[ A^{-1} = \begin{bmatrix} 7 & -3 & -3 \\ -1 & 1 & -1 \\ -1 & 0 & -1 \end{bmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

The inverse of the matrix [[1, 2, 3], [-1, 1, 2], [1, 2, 4]] is

The inverse of the matrix [[1, 2, 3], [1, 1, 5], [2, 4, 7]] is

The inverse of the matrix [[0, 1, 2], [1, 2, 3], [3, 1, 1]] is

The inverse of the matrix [[1, 0, 0], [2, 1, 0], [3, 3, 1]] is

The inverse of the matrix [[3, -2, -1], [-4, 1, -1], [2, 0, 1]] is

The inverse of the matrix ([2,1],[1,3]) is

The inverse of the matrix [[5,-2],[3,1]] is

The inverse of matrix [[2, -3], [-1, 2]] is

The inverse of matrix [[1, 2], [3, 4]] is

The inverse of matrix [[1, 3], [2, 7]] is

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. The inverse of the matrix [[1, 0, 0], [2, 1, 0], [3, 3, 1]] is

    Text Solution

    |

  2. The inverse of the matrix [[2, 1, 3], [1, 0, 1], [1, 1, 1]] is

    Text Solution

    |

  3. The inverse of the matrix [[1, 3, 3], [1, 4, 3], [1, 3, 4]] is

    Text Solution

    |

  4. The inverse of the matrix [[3, -2, -1], [-4, 1, -1], [2, 0, 1]] is

    Text Solution

    |

  5. The inverse of the matrix [[1, 0, 0], [3, 3, 0], [5, 2, -1]] is

    Text Solution

    |

  6. If A=[[1, 0, 0], [a, 1, 0], [b, c, 1]], then A^(-1)=

    Text Solution

    |

  7. The inverse of the matrix [[1, 2, 3], [0, 2, 4], [0, 0, 5]] is

    Text Solution

    |

  8. The inverse of the matrix [[1, 2, 3], [1, 1, 5], [2, 4, 7]] is

    Text Solution

    |

  9. The inverse of the matrix [[1, 0, 1], [0, 2, 3], [1, 2, 1]] is

    Text Solution

    |

  10. The inverse of the matrix [[2, -1, 1], [-1, 2, -1], [1, -1, 2]] is

    Text Solution

    |

  11. The inverse of the matrix [[0, 1, 2], [1, 2, 3], [3, 1, 1]] is

    Text Solution

    |

  12. The inverse of the matrix [[2, 0, -1], [5, 1, 0], [0, 1, 3]] is

    Text Solution

    |

  13. The inverse of the matrix [[2, -3, 3], [2, 2, 3], [3, -2, 2]] is

    Text Solution

    |

  14. The inverse of the matrix [[1, 2, -2], [-3, 0, -5], [2, 5, 0]] is

    Text Solution

    |

  15. The inverse of the matrix [[1, 2, -2], [0, -2, 1], [-1, 3, 0]] is

    Text Solution

    |

  16. The inverse of the matrix [[3, 2, 6], [1, 1, 2], [2, 2, 5]] is

    Text Solution

    |

  17. The inverse of the matrix [[1, 2, 3], [-1, 1, 2], [1, 2, 4]] is

    Text Solution

    |

  18. The inverse of the matrix [[costheta, -sintheta, 0], [sintheta, costhe...

    Text Solution

    |

  19. If F(alpha)=[[cosalpha, -sinalpha, 0], [sinalpha, cosalpha, 0], [0, 0,...

    Text Solution

    |

  20. Then inverse of the matrix [[1, 0, 0], [0, costheta, sintheta], [0, si...

    Text Solution

    |