Home
Class 12
MATHS
The inverse of the matrix [[3, -2, -1], ...

The inverse of the matrix `[[3, -2, -1], [-4, 1, -1], [2, 0, 1]]` is

A

`[[1, 2, 3], [3, 3, 7], [-2, -4, -5]]`

B

`[[1, 2, 3], [2, 5, 7], [-2, -4, -5]]`

C

`[[1, -3, 5], [7, 4, 6], [4, 2, 7]]`

D

`[[1, 2, -4], [8, -4, -5], [3, 5, 2]]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \[ A = \begin{bmatrix} 3 & -2 & -1 \\ -4 & 1 & -1 \\ 2 & 0 & 1 \end{bmatrix}, \] we will follow these steps: ### Step 1: Calculate the Determinant of A The determinant of a 3x3 matrix \[ \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \] is given by the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg). \] For our matrix \( A \): - \( a = 3, b = -2, c = -1 \) - \( d = -4, e = 1, f = -1 \) - \( g = 2, h = 0, i = 1 \) Calculating the determinant: \[ \text{det}(A) = 3(1 \cdot 1 - (-1) \cdot 0) - (-2)(-4 \cdot 1 - (-1) \cdot 2) + (-1)(-4 \cdot 0 - 1 \cdot 2) \] \[ = 3(1 - 0) - (-2)(-4 + 2) - 1(0 - 2) \] \[ = 3 - (-2)(-2) + 2 \] \[ = 3 - 4 + 2 = 1. \] ### Step 2: Check if the Determinant is Non-Zero Since \(\text{det}(A) = 1\) (which is not equal to 0), the inverse of matrix \( A \) exists. ### Step 3: Calculate the Adjoint of A The adjoint of a matrix is the transpose of its cofactor matrix. We will calculate the cofactor matrix first. 1. **Cofactor \( C_{11} \)**: \[ C_{11} = \text{det}\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} = (1)(1) - (-1)(0) = 1. \] 2. **Cofactor \( C_{12} \)**: \[ C_{12} = -\text{det}\begin{bmatrix} -4 & -1 \\ 2 & 1 \end{bmatrix} = -((-4)(1) - (-1)(2)) = -(-4 + 2) = 2. \] 3. **Cofactor \( C_{13} \)**: \[ C_{13} = \text{det}\begin{bmatrix} -4 & 1 \\ 2 & 0 \end{bmatrix} = (-4)(0) - (1)(2) = -2. \] 4. **Cofactor \( C_{21} \)**: \[ C_{21} = -\text{det}\begin{bmatrix} -2 & -1 \\ 0 & 1 \end{bmatrix} = -((-2)(1) - (-1)(0)) = 2. \] 5. **Cofactor \( C_{22} \)**: \[ C_{22} = \text{det}\begin{bmatrix} 3 & -1 \\ 2 & 1 \end{bmatrix} = (3)(1) - (-1)(2) = 3 + 2 = 5. \] 6. **Cofactor \( C_{23} \)**: \[ C_{23} = -\text{det}\begin{bmatrix} 3 & -2 \\ 2 & 0 \end{bmatrix} = -((3)(0) - (-2)(2)) = -4. \] 7. **Cofactor \( C_{31} \)**: \[ C_{31} = \text{det}\begin{bmatrix} -2 & -1 \\ 1 & -1 \end{bmatrix} = (-2)(-1) - (-1)(1) = 2 + 1 = 3. \] 8. **Cofactor \( C_{32} \)**: \[ C_{32} = -\text{det}\begin{bmatrix} 3 & -1 \\ -4 & -1 \end{bmatrix} = -((3)(-1) - (-1)(-4)) = -(-3 - 4) = 7. \] 9. **Cofactor \( C_{33} \)**: \[ C_{33} = \text{det}\begin{bmatrix} 3 & -2 \\ -4 & 1 \end{bmatrix} = (3)(1) - (-2)(-4) = 3 - 8 = -5. \] Now, the cofactor matrix \( C \) is: \[ C = \begin{bmatrix} 1 & 2 & -2 \\ 2 & 5 & -4 \\ 3 & 7 & -5 \end{bmatrix}. \] Taking the transpose to get the adjoint: \[ \text{adj}(A) = C^T = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ -2 & -4 & -5 \end{bmatrix}. \] ### Step 4: Calculate the Inverse of A Using the formula for the inverse of a matrix: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A). \] Since \(\text{det}(A) = 1\): \[ A^{-1} = 1 \cdot \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ -2 & -4 & -5 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ -2 & -4 & -5 \end{bmatrix}. \] ### Final Answer The inverse of the matrix \( A \) is \[ A^{-1} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ -2 & -4 & -5 \end{bmatrix}. \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

The inverse of the matrix [[2, -1, 1], [-1, 2, -1], [1, -1, 2]] is

The inverse of the matrix [[1, 2, 3], [-1, 1, 2], [1, 2, 4]] is

The inverse of the matrix [[2, 0, -1], [5, 1, 0], [0, 1, 3]] is

The inverse of the matrix [[1, 2, -2], [0, -2, 1], [-1, 3, 0]] is

The inverse of the matrix [[1, 2, 3], [1, 1, 5], [2, 4, 7]] is

The inverse of the matrix [(3,-2),(1,4)] is

The inverse of the matrix [[1, 0, 1], [0, 2, 3], [1, 2, 1]] is

The inverse of the matrix [[1, 0, 0], [2, 1, 0], [3, 3, 1]] is

The inverse of the matrix [[2, 1, 3], [1, 0, 1], [1, 1, 1]] is

The inverse of the matrix [[1, 2, 3], [0, 2, 4], [0, 0, 5]] is

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. The inverse of the matrix [[2, 1, 3], [1, 0, 1], [1, 1, 1]] is

    Text Solution

    |

  2. The inverse of the matrix [[1, 3, 3], [1, 4, 3], [1, 3, 4]] is

    Text Solution

    |

  3. The inverse of the matrix [[3, -2, -1], [-4, 1, -1], [2, 0, 1]] is

    Text Solution

    |

  4. The inverse of the matrix [[1, 0, 0], [3, 3, 0], [5, 2, -1]] is

    Text Solution

    |

  5. If A=[[1, 0, 0], [a, 1, 0], [b, c, 1]], then A^(-1)=

    Text Solution

    |

  6. The inverse of the matrix [[1, 2, 3], [0, 2, 4], [0, 0, 5]] is

    Text Solution

    |

  7. The inverse of the matrix [[1, 2, 3], [1, 1, 5], [2, 4, 7]] is

    Text Solution

    |

  8. The inverse of the matrix [[1, 0, 1], [0, 2, 3], [1, 2, 1]] is

    Text Solution

    |

  9. The inverse of the matrix [[2, -1, 1], [-1, 2, -1], [1, -1, 2]] is

    Text Solution

    |

  10. The inverse of the matrix [[0, 1, 2], [1, 2, 3], [3, 1, 1]] is

    Text Solution

    |

  11. The inverse of the matrix [[2, 0, -1], [5, 1, 0], [0, 1, 3]] is

    Text Solution

    |

  12. The inverse of the matrix [[2, -3, 3], [2, 2, 3], [3, -2, 2]] is

    Text Solution

    |

  13. The inverse of the matrix [[1, 2, -2], [-3, 0, -5], [2, 5, 0]] is

    Text Solution

    |

  14. The inverse of the matrix [[1, 2, -2], [0, -2, 1], [-1, 3, 0]] is

    Text Solution

    |

  15. The inverse of the matrix [[3, 2, 6], [1, 1, 2], [2, 2, 5]] is

    Text Solution

    |

  16. The inverse of the matrix [[1, 2, 3], [-1, 1, 2], [1, 2, 4]] is

    Text Solution

    |

  17. The inverse of the matrix [[costheta, -sintheta, 0], [sintheta, costhe...

    Text Solution

    |

  18. If F(alpha)=[[cosalpha, -sinalpha, 0], [sinalpha, cosalpha, 0], [0, 0,...

    Text Solution

    |

  19. Then inverse of the matrix [[1, 0, 0], [0, costheta, sintheta], [0, si...

    Text Solution

    |

  20. If A=[[sectheta, tantheta, 0], [tantheta, sectheta, 0], [0, 0, 1]], th...

    Text Solution

    |