Home
Class 12
MATHS
The inverse of the matrix [[1, 0, 1], [0...

The inverse of the matrix `[[1, 0, 1], [0, 2, 3], [1, 2, 1]]` is

A

`(-1)/(6)[[-4, 2, -2], [3, 0, -3], [-2, -2, 2]]`

B

`(1)/(6)[[-4, 2, -2], [3, 0, -3], [-2, -2, 2]]`

C

`[[-2, 1, -1], [1, 0, -1], [-2, -2, 2]]`

D

`[[2, -1, 1], [-1, 0, 1], [2, 2, -2]]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 3 \\ 1 & 2 & 1 \end{bmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of Matrix A The determinant of a 3x3 matrix \( A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \) is calculated using the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A \): - \( a = 1, b = 0, c = 1 \) - \( d = 0, e = 2, f = 3 \) - \( g = 1, h = 2, i = 1 \) Calculating the determinant: \[ \text{det}(A) = 1(2 \cdot 1 - 3 \cdot 2) - 0(0 \cdot 1 - 3 \cdot 1) + 1(0 \cdot 2 - 2 \cdot 1) \] \[ = 1(2 - 6) + 0 + 1(0 - 2) \] \[ = 1(-4) + 0 - 2 = -4 - 2 = -6 \] ### Step 2: Check if the Determinant is Non-Zero Since \( \text{det}(A) = -6 \neq 0 \), the inverse of matrix \( A \) exists. ### Step 3: Calculate the Cofactor Matrix The cofactor matrix \( C \) is calculated by finding the determinant of the 2x2 submatrices formed by removing the row and column of each element, and applying the checkerboard pattern of signs. 1. **Cofactor \( C_{11} \)**: \[ C_{11} = \text{det}\begin{bmatrix} 2 & 3 \\ 2 & 1 \end{bmatrix} = (2 \cdot 1 - 3 \cdot 2) = 2 - 6 = -4 \] 2. **Cofactor \( C_{12} \)**: \[ C_{12} = -\text{det}\begin{bmatrix} 0 & 3 \\ 1 & 1 \end{bmatrix} = -(0 \cdot 1 - 3 \cdot 1) = 3 \] 3. **Cofactor \( C_{13} \)**: \[ C_{13} = \text{det}\begin{bmatrix} 0 & 2 \\ 1 & 2 \end{bmatrix} = (0 \cdot 2 - 2 \cdot 1) = -2 \] 4. **Cofactor \( C_{21} \)**: \[ C_{21} = -\text{det}\begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix} = -(0 \cdot 1 - 1 \cdot 2) = 2 \] 5. **Cofactor \( C_{22} \)**: \[ C_{22} = \text{det}\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = (1 \cdot 1 - 1 \cdot 1) = 0 \] 6. **Cofactor \( C_{23} \)**: \[ C_{23} = -\text{det}\begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix} = -(1 \cdot 2 - 0 \cdot 1) = -2 \] 7. **Cofactor \( C_{31} \)**: \[ C_{31} = \text{det}\begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix} = (0 \cdot 3 - 1 \cdot 2) = -2 \] 8. **Cofactor \( C_{32} \)**: \[ C_{32} = -\text{det}\begin{bmatrix} 1 & 1 \\ 0 & 3 \end{bmatrix} = -(1 \cdot 3 - 1 \cdot 0) = -3 \] 9. **Cofactor \( C_{33} \)**: \[ C_{33} = \text{det}\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} = (1 \cdot 2 - 0 \cdot 0) = 2 \] Thus, the cofactor matrix \( C \) is: \[ C = \begin{bmatrix} -4 & 3 & -2 \\ 2 & 0 & -2 \\ -2 & -3 & 2 \end{bmatrix} \] ### Step 4: Calculate the Adjoint of Matrix A The adjoint of matrix \( A \) is the transpose of the cofactor matrix \( C \): \[ \text{adj}(A) = C^T = \begin{bmatrix} -4 & 2 & -2 \\ 3 & 0 & -3 \\ -2 & -2 & 2 \end{bmatrix} \] ### Step 5: Calculate the Inverse of Matrix A Using the formula for the inverse: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the values we found: \[ A^{-1} = \frac{1}{-6} \cdot \begin{bmatrix} -4 & 2 & -2 \\ 3 & 0 & -3 \\ -2 & -2 & 2 \end{bmatrix} \] \[ = \begin{bmatrix} \frac{4}{6} & -\frac{2}{6} & \frac{2}{6} \\ -\frac{3}{6} & 0 & \frac{3}{6} \\ \frac{2}{6} & \frac{2}{6} & -\frac{2}{6} \end{bmatrix} \] \[ = \begin{bmatrix} \frac{2}{3} & -\frac{1}{3} & \frac{1}{3} \\ -\frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{3} & -\frac{1}{3} \end{bmatrix} \] ### Final Answer The inverse of the matrix \( A \) is: \[ A^{-1} = \begin{bmatrix} \frac{2}{3} & -\frac{1}{3} & \frac{1}{3} \\ -\frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{3} & -\frac{1}{3} \end{bmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

The inverse of the matrix [[1, 0, 0], [3, 3, 0], [5, 2, -1]] is

The inverse of the matrix [[1, 2, -2], [0, -2, 1], [-1, 3, 0]] is

The inverse of the matrix [[1, 0, 0], [2, 1, 0], [3, 3, 1]] is

The inverse of the matrix [[0, 1, 2], [1, 2, 3], [3, 1, 1]] is

The inverse of the matrix [[2, 0, 0], [0, 1, 0], [0, 0, -1]] is

The inverse of the matrix [[1, 2, 3], [0, 2, 4], [0, 0, 5]] is

The inverse of the matrix [[2, 0, -1], [5, 1, 0], [0, 1, 3]] is

The inverse of the matrix [[2, 1, 3], [1, 0, 1], [1, 1, 1]] is

The inverse of the matrix [[3, -2, -1], [-4, 1, -1], [2, 0, 1]] is

The inverse of the matrix [[1, 2, -2], [-3, 0, -5], [2, 5, 0]] is

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. The inverse of the matrix [[1, 2, 3], [0, 2, 4], [0, 0, 5]] is

    Text Solution

    |

  2. The inverse of the matrix [[1, 2, 3], [1, 1, 5], [2, 4, 7]] is

    Text Solution

    |

  3. The inverse of the matrix [[1, 0, 1], [0, 2, 3], [1, 2, 1]] is

    Text Solution

    |

  4. The inverse of the matrix [[2, -1, 1], [-1, 2, -1], [1, -1, 2]] is

    Text Solution

    |

  5. The inverse of the matrix [[0, 1, 2], [1, 2, 3], [3, 1, 1]] is

    Text Solution

    |

  6. The inverse of the matrix [[2, 0, -1], [5, 1, 0], [0, 1, 3]] is

    Text Solution

    |

  7. The inverse of the matrix [[2, -3, 3], [2, 2, 3], [3, -2, 2]] is

    Text Solution

    |

  8. The inverse of the matrix [[1, 2, -2], [-3, 0, -5], [2, 5, 0]] is

    Text Solution

    |

  9. The inverse of the matrix [[1, 2, -2], [0, -2, 1], [-1, 3, 0]] is

    Text Solution

    |

  10. The inverse of the matrix [[3, 2, 6], [1, 1, 2], [2, 2, 5]] is

    Text Solution

    |

  11. The inverse of the matrix [[1, 2, 3], [-1, 1, 2], [1, 2, 4]] is

    Text Solution

    |

  12. The inverse of the matrix [[costheta, -sintheta, 0], [sintheta, costhe...

    Text Solution

    |

  13. If F(alpha)=[[cosalpha, -sinalpha, 0], [sinalpha, cosalpha, 0], [0, 0,...

    Text Solution

    |

  14. Then inverse of the matrix [[1, 0, 0], [0, costheta, sintheta], [0, si...

    Text Solution

    |

  15. If A=[[sectheta, tantheta, 0], [tantheta, sectheta, 0], [0, 0, 1]], th...

    Text Solution

    |

  16. A=[[3, 2, 6], [1, 1, 2], [2, 2, 5]], B=[[1, 2, -2], [-1, 3, 0], [0, -2...

    Text Solution

    |

  17. If A=[[1, 0, 0], [0, 1, 1], [0, -2, 4]] and A^(-1)=(1)/(6)(A^(2)+cA+dI...

    Text Solution

    |

  18. If A=[[2, 2, 1], [1, 3, 1], [1, 2, 2]], and A^(-1)+(A-5I)(A-I)^(2)=

    Text Solution

    |

  19. If A=[[1, 2, 2], [2, 1, 2], [2, 2, 1]] and A^(-1) exist and not equal ...

    Text Solution

    |

  20. If for AX=B, B=[[9], [52], [0]] and A^(-1)=[[3, -(1)/(2), -(1)/(2)], [...

    Text Solution

    |