Home
Class 12
MATHS
The inverse of the matrix [[2, -1, 1], [...

The inverse of the matrix `[[2, -1, 1], [-1, 2, -1], [1, -1, 2]]` is

A

`(-1)/(2)[[3, 1, -1], [1, 3, 1], [-1, 1, 3]]`

B

`(1)/(2)[[3, 1, -1], [1, 3, 1], [-1, 1, 3]]`

C

`(-1)/(4)[[3, 1, -1], [1, 3, 1], [-1, 1, 3]]`

D

`(1)/(4)[[3, 1, -1], [1, 3, 1], [-1, 1, 3]]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} \), we will follow the steps of calculating the determinant and the adjoint of the matrix, and then use these to find the inverse. ### Step 1: Calculate the Determinant of Matrix A The determinant of a 3x3 matrix \( A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \) can be calculated using the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A \): \[ \text{det}(A) = 2 \cdot (2 \cdot 2 - (-1) \cdot (-1)) - (-1) \cdot (-1 \cdot 2 - (-1) \cdot 1) + 1 \cdot (-1 \cdot (-1) - 2 \cdot 1) \] Calculating each term: 1. \( 2 \cdot (4 - 1) = 2 \cdot 3 = 6 \) 2. \( -(-1) \cdot (-2 + 1) = 1 \cdot (-1) = -1 \) 3. \( 1 \cdot (1 - 2) = 1 \cdot (-1) = -1 \) Putting it all together: \[ \text{det}(A) = 6 - 1 - 1 = 4 \] ### Step 2: Calculate the Adjoint of Matrix A The adjoint of a matrix is the transpose of its cofactor matrix. We will calculate the cofactor for each element of the matrix. #### Cofactor Calculation 1. **Cofactor \( C_{11} \)**: \[ C_{11} = \text{det}\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} = (2 \cdot 2) - (-1 \cdot -1) = 4 - 1 = 3 \] 2. **Cofactor \( C_{12} \)**: \[ C_{12} = -\text{det}\begin{bmatrix} -1 & -1 \\ 1 & 2 \end{bmatrix} = -((-1 \cdot 2) - (-1 \cdot 1)) = -(-2 + 1) = 1 \] 3. **Cofactor \( C_{13} \)**: \[ C_{13} = \text{det}\begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix} = (-1 \cdot -1) - (2 \cdot 1) = 1 - 2 = -1 \] 4. **Cofactor \( C_{21} \)**: \[ C_{21} = -\text{det}\begin{bmatrix} -1 & 1 \\ -1 & 2 \end{bmatrix} = -((-1 \cdot 2) - (1 \cdot -1)) = -(-2 + 1) = 1 \] 5. **Cofactor \( C_{22} \)**: \[ C_{22} = \text{det}\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} = (2 \cdot 2) - (1 \cdot 1) = 4 - 1 = 3 \] 6. **Cofactor \( C_{23} \)**: \[ C_{23} = -\text{det}\begin{bmatrix} 2 & -1 \\ 1 & -1 \end{bmatrix} = -((2 \cdot -1) - (-1 \cdot 1)) = -(-2 + 1) = 1 \] 7. **Cofactor \( C_{31} \)**: \[ C_{31} = \text{det}\begin{bmatrix} -1 & 1 \\ 2 & -1 \end{bmatrix} = (-1 \cdot -1) - (1 \cdot 2) = 1 - 2 = -1 \] 8. **Cofactor \( C_{32} \)**: \[ C_{32} = -\text{det}\begin{bmatrix} 2 & 1 \\ -1 & -1 \end{bmatrix} = -((2 \cdot -1) - (1 \cdot -1)) = -(-2 + 1) = 1 \] 9. **Cofactor \( C_{33} \)**: \[ C_{33} = \text{det}\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} = (2 \cdot 2) - (-1 \cdot -1) = 4 - 1 = 3 \] #### Cofactor Matrix The cofactor matrix \( C \) is: \[ C = \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3 \end{bmatrix} \] #### Adjoint of Matrix A Taking the transpose of the cofactor matrix: \[ \text{adj}(A) = C^T = \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3 \end{bmatrix} \] ### Step 3: Calculate the Inverse of Matrix A Using the formula for the inverse: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the values: \[ A^{-1} = \frac{1}{4} \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3 \end{bmatrix} \] Thus, the inverse of the matrix \( A \) is: \[ A^{-1} = \begin{bmatrix} \frac{3}{4} & \frac{1}{4} & -\frac{1}{4} \\ \frac{1}{4} & \frac{3}{4} & \frac{1}{4} \\ -\frac{1}{4} & \frac{1}{4} & \frac{3}{4} \end{bmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

The inverse of the matrix [[2, 1, 3], [1, 0, 1], [1, 1, 1]] is

The inverse of the matrix [[3, -2, -1], [-4, 1, -1], [2, 0, 1]] is

The inverse of the matrix [[0, 1, 2], [1, 2, 3], [3, 1, 1]] is

The inverse of the matrix [[1, 2, 3], [-1, 1, 2], [1, 2, 4]] is

The inverse of the matrix [[2, 0, -1], [5, 1, 0], [0, 1, 3]] is

The inverse of the matrix [[1, 0, 1], [0, 2, 3], [1, 2, 1]] is

The inverse of the matrix [[1, 2, -2], [0, -2, 1], [-1, 3, 0]] is

The inverse of matrix [[2, 1], [1, -1]] is

The inverse of the matrix ([2,1],[1,3]) is

The inverse of matrix [[2, -3], [-1, 2]] is

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. The inverse of the matrix [[1, 2, 3], [1, 1, 5], [2, 4, 7]] is

    Text Solution

    |

  2. The inverse of the matrix [[1, 0, 1], [0, 2, 3], [1, 2, 1]] is

    Text Solution

    |

  3. The inverse of the matrix [[2, -1, 1], [-1, 2, -1], [1, -1, 2]] is

    Text Solution

    |

  4. The inverse of the matrix [[0, 1, 2], [1, 2, 3], [3, 1, 1]] is

    Text Solution

    |

  5. The inverse of the matrix [[2, 0, -1], [5, 1, 0], [0, 1, 3]] is

    Text Solution

    |

  6. The inverse of the matrix [[2, -3, 3], [2, 2, 3], [3, -2, 2]] is

    Text Solution

    |

  7. The inverse of the matrix [[1, 2, -2], [-3, 0, -5], [2, 5, 0]] is

    Text Solution

    |

  8. The inverse of the matrix [[1, 2, -2], [0, -2, 1], [-1, 3, 0]] is

    Text Solution

    |

  9. The inverse of the matrix [[3, 2, 6], [1, 1, 2], [2, 2, 5]] is

    Text Solution

    |

  10. The inverse of the matrix [[1, 2, 3], [-1, 1, 2], [1, 2, 4]] is

    Text Solution

    |

  11. The inverse of the matrix [[costheta, -sintheta, 0], [sintheta, costhe...

    Text Solution

    |

  12. If F(alpha)=[[cosalpha, -sinalpha, 0], [sinalpha, cosalpha, 0], [0, 0,...

    Text Solution

    |

  13. Then inverse of the matrix [[1, 0, 0], [0, costheta, sintheta], [0, si...

    Text Solution

    |

  14. If A=[[sectheta, tantheta, 0], [tantheta, sectheta, 0], [0, 0, 1]], th...

    Text Solution

    |

  15. A=[[3, 2, 6], [1, 1, 2], [2, 2, 5]], B=[[1, 2, -2], [-1, 3, 0], [0, -2...

    Text Solution

    |

  16. If A=[[1, 0, 0], [0, 1, 1], [0, -2, 4]] and A^(-1)=(1)/(6)(A^(2)+cA+dI...

    Text Solution

    |

  17. If A=[[2, 2, 1], [1, 3, 1], [1, 2, 2]], and A^(-1)+(A-5I)(A-I)^(2)=

    Text Solution

    |

  18. If A=[[1, 2, 2], [2, 1, 2], [2, 2, 1]] and A^(-1) exist and not equal ...

    Text Solution

    |

  19. If for AX=B, B=[[9], [52], [0]] and A^(-1)=[[3, -(1)/(2), -(1)/(2)], [...

    Text Solution

    |

  20. If A=[[1, 2, 3], [-1, 1, 2], [1, 2, 4]], B=[[1], [2], [3]] and AX=B, t...

    Text Solution

    |