Home
Class 12
MATHS
The inverse of the matrix [[2, 0, -1], [...

The inverse of the matrix `[[2, 0, -1], [5, 1, 0], [0, 1, 3]]` is

A

`[[3, -1, 1], [5, -2, 2], [-15, 6, -5]]`

B

`[[-3, 1, -1], [-5, 2, -2], [15, -6, 3]]`

C

`[[3, -1, 1], [-15, 6, -5], [5,- 2, 2]]`

D

`[[-3, 1, -1], [15, -6, 5], [-5, 2, -2]]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of Matrix A The determinant of a 3x3 matrix \( A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \) is given by the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A \): - \( a = 2, b = 0, c = -1 \) - \( d = 5, e = 1, f = 0 \) - \( g = 0, h = 1, i = 3 \) Calculating the determinant: \[ \text{det}(A) = 2(1 \cdot 3 - 0 \cdot 1) - 0(5 \cdot 3 - 0 \cdot 0) + (-1)(5 \cdot 1 - 0 \cdot 0) \] This simplifies to: \[ \text{det}(A) = 2(3) - 0 + (-1)(5) = 6 - 5 = 1 \] ### Step 2: Verify the Determinant Since \( \text{det}(A) = 1 \), which is not equal to 0, the inverse of matrix \( A \) exists. ### Step 3: Calculate the Adjoint of Matrix A The adjoint of a matrix is the transpose of its cofactor matrix. We will calculate the cofactor matrix first. #### Step 3.1: Calculate the Cofactors The cofactor \( C_{ij} \) is calculated by taking the determinant of the submatrix formed by deleting the \( i \)-th row and \( j \)-th column, multiplied by \( (-1)^{i+j} \). 1. **Cofactor \( C_{11} \)**: \[ C_{11} = \text{det} \begin{bmatrix} 1 & 0 \\ 1 & 3 \end{bmatrix} = (1)(3) - (0)(1) = 3 \] 2. **Cofactor \( C_{12} \)**: \[ C_{12} = -\text{det} \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix} = -((5)(3) - (0)(0)) = -15 \] 3. **Cofactor \( C_{13} \)**: \[ C_{13} = \text{det} \begin{bmatrix} 5 & 1 \\ 0 & 1 \end{bmatrix} = (5)(1) - (1)(0) = 5 \] 4. **Cofactor \( C_{21} \)**: \[ C_{21} = -\text{det} \begin{bmatrix} 0 & -1 \\ 1 & 3 \end{bmatrix} = -((0)(3) - (-1)(1)) = -1 \] 5. **Cofactor \( C_{22} \)**: \[ C_{22} = \text{det} \begin{bmatrix} 2 & -1 \\ 0 & 3 \end{bmatrix} = (2)(3) - (-1)(0) = 6 \] 6. **Cofactor \( C_{23} \)**: \[ C_{23} = -\text{det} \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} = -((2)(1) - (0)(0)) = -2 \] 7. **Cofactor \( C_{31} \)**: \[ C_{31} = \text{det} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = (0)(0) - (-1)(1) = 1 \] 8. **Cofactor \( C_{32} \)**: \[ C_{32} = -\text{det} \begin{bmatrix} 2 & -1 \\ 5 & 0 \end{bmatrix} = -((2)(0) - (-1)(5)) = -5 \] 9. **Cofactor \( C_{33} \)**: \[ C_{33} = \text{det} \begin{bmatrix} 2 & 0 \\ 5 & 1 \end{bmatrix} = (2)(1) - (0)(5) = 2 \] #### Step 3.2: Form the Cofactor Matrix The cofactor matrix \( C \) is: \[ C = \begin{bmatrix} 3 & -15 & 5 \\ -1 & 6 & -2 \\ 1 & -5 & 2 \end{bmatrix} \] #### Step 3.3: Transpose the Cofactor Matrix Now, we take the transpose of the cofactor matrix to get the adjoint: \[ \text{adj}(A) = C^T = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix} \] ### Step 4: Calculate the Inverse of Matrix A Using the formula for the inverse: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Since \( \text{det}(A) = 1 \): \[ A^{-1} = 1 \cdot \text{adj}(A) = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix} \] ### Final Answer The inverse of the matrix \( A \) is: \[ A^{-1} = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

The inverse of the matrix [[2, 0, 0], [0, 1, 0], [0, 0, -1]] is

The inverse of the matrix [[1, 0, 0], [2, 1, 0], [3, 3, 1]] is

The inverse of the matrix [[3, -2, -1], [-4, 1, -1], [2, 0, 1]] is

The inverse of the matrix [[1, 0, 0], [3, 3, 0], [5, 2, -1]] is

The inverse of the matrix [[1, 0, 1], [0, 2, 3], [1, 2, 1]] is

The inverse of the matrix [[2, 1, 3], [1, 0, 1], [1, 1, 1]] is

The inverse of the matrix [[1, 2, -2], [-3, 0, -5], [2, 5, 0]] is

The inverse of the matrix [[1, 2, -2], [0, -2, 1], [-1, 3, 0]] is

The inverse of the matrix [[1, 2, 3], [0, 2, 4], [0, 0, 5]] is

The inverse of the matrix [[0, 1, 2], [1, 2, 3], [3, 1, 1]] is

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. The inverse of the matrix [[2, -1, 1], [-1, 2, -1], [1, -1, 2]] is

    Text Solution

    |

  2. The inverse of the matrix [[0, 1, 2], [1, 2, 3], [3, 1, 1]] is

    Text Solution

    |

  3. The inverse of the matrix [[2, 0, -1], [5, 1, 0], [0, 1, 3]] is

    Text Solution

    |

  4. The inverse of the matrix [[2, -3, 3], [2, 2, 3], [3, -2, 2]] is

    Text Solution

    |

  5. The inverse of the matrix [[1, 2, -2], [-3, 0, -5], [2, 5, 0]] is

    Text Solution

    |

  6. The inverse of the matrix [[1, 2, -2], [0, -2, 1], [-1, 3, 0]] is

    Text Solution

    |

  7. The inverse of the matrix [[3, 2, 6], [1, 1, 2], [2, 2, 5]] is

    Text Solution

    |

  8. The inverse of the matrix [[1, 2, 3], [-1, 1, 2], [1, 2, 4]] is

    Text Solution

    |

  9. The inverse of the matrix [[costheta, -sintheta, 0], [sintheta, costhe...

    Text Solution

    |

  10. If F(alpha)=[[cosalpha, -sinalpha, 0], [sinalpha, cosalpha, 0], [0, 0,...

    Text Solution

    |

  11. Then inverse of the matrix [[1, 0, 0], [0, costheta, sintheta], [0, si...

    Text Solution

    |

  12. If A=[[sectheta, tantheta, 0], [tantheta, sectheta, 0], [0, 0, 1]], th...

    Text Solution

    |

  13. A=[[3, 2, 6], [1, 1, 2], [2, 2, 5]], B=[[1, 2, -2], [-1, 3, 0], [0, -2...

    Text Solution

    |

  14. If A=[[1, 0, 0], [0, 1, 1], [0, -2, 4]] and A^(-1)=(1)/(6)(A^(2)+cA+dI...

    Text Solution

    |

  15. If A=[[2, 2, 1], [1, 3, 1], [1, 2, 2]], and A^(-1)+(A-5I)(A-I)^(2)=

    Text Solution

    |

  16. If A=[[1, 2, 2], [2, 1, 2], [2, 2, 1]] and A^(-1) exist and not equal ...

    Text Solution

    |

  17. If for AX=B, B=[[9], [52], [0]] and A^(-1)=[[3, -(1)/(2), -(1)/(2)], [...

    Text Solution

    |

  18. If A=[[1, 2, 3], [-1, 1, 2], [1, 2, 4]], B=[[1], [2], [3]] and AX=B, t...

    Text Solution

    |

  19. If A=[[1, 0, 1], [0, 2, 3], [1, 2, 1]], b=[[1, 2, 3], [1, 1, 5], [2, 4...

    Text Solution

    |

  20. If A=[[-2, 0, 0], [-2, -1, 3]], B=[[0, 1], [2, 3], [1, -1]], then

    Text Solution

    |