Home
Class 12
MATHS
The inverse of the matrix [[2, -3, 3], [...

The inverse of the matrix `[[2, -3, 3], [2, 2, 3], [3, -2, 2]]` is

A

`(-1)/(5)[[-2, 0, 3], [-1, 1, 0], [2, 1,-2]]`

B

`(1)/(5)[[-2, 0, 3], [-1, 1, 0], [2, 1,-2]]`

C

`[[2, 0, -3], [1, -1, 0], [-2, -1, 2]]`

D

`[[-2, 0, 3], [-1, 1, 0], [2, 1, -2]]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{bmatrix} 2 & -3 & 3 \\ 2 & 2 & 3 \\ 3 & -2 & 2 \end{bmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of Matrix A The determinant of a 3x3 matrix \( A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \) is calculated using the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A \): \[ \text{det}(A) = 2 \begin{vmatrix} 2 & 3 \\ -2 & 2 \end{vmatrix} - (-3) \begin{vmatrix} 2 & 3 \\ 3 & 2 \end{vmatrix} + 3 \begin{vmatrix} 2 & 2 \\ 3 & -2 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} 2 & 3 \\ -2 & 2 \end{vmatrix} = (2)(2) - (3)(-2) = 4 + 6 = 10 \) 2. \( \begin{vmatrix} 2 & 3 \\ 3 & 2 \end{vmatrix} = (2)(2) - (3)(3) = 4 - 9 = -5 \) 3. \( \begin{vmatrix} 2 & 2 \\ 3 & -2 \end{vmatrix} = (2)(-2) - (2)(3) = -4 - 6 = -10 \) Substituting back into the determinant formula: \[ \text{det}(A) = 2(10) + 3(5) + 3(-10) = 20 + 15 - 30 = 5 \] ### Step 2: Check if the Determinant is Non-Zero Since \( \text{det}(A) = 5 \neq 0 \), the inverse of matrix \( A \) exists. ### Step 3: Calculate the Adjoint of Matrix A The adjoint of a matrix is the transpose of its cofactor matrix. We will calculate the cofactor matrix \( C \) first. #### Calculate Cofactors: 1. \( C_{11} = \begin{vmatrix} 2 & 3 \\ -2 & 2 \end{vmatrix} = 10 \) 2. \( C_{12} = -\begin{vmatrix} 2 & 3 \\ 3 & 2 \end{vmatrix} = 5 \) 3. \( C_{13} = \begin{vmatrix} 2 & 2 \\ 3 & -2 \end{vmatrix} = -10 \) 4. \( C_{21} = -\begin{vmatrix} -3 & 3 \\ -2 & 2 \end{vmatrix} = 0 \) 5. \( C_{22} = \begin{vmatrix} 2 & 3 \\ 3 & 2 \end{vmatrix} = -5 \) 6. \( C_{23} = -\begin{vmatrix} 2 & -3 \\ 3 & -2 \end{vmatrix} = -5 \) 7. \( C_{31} = \begin{vmatrix} -3 & 3 \\ 2 & 3 \end{vmatrix} = -15 \) 8. \( C_{32} = -\begin{vmatrix} 2 & -3 \\ 2 & 3 \end{vmatrix} = 0 \) 9. \( C_{33} = \begin{vmatrix} 2 & -3 \\ 2 & 2 \end{vmatrix} = 10 \) Thus, the cofactor matrix \( C \) is: \[ C = \begin{bmatrix} 10 & 5 & -10 \\ 0 & -5 & -5 \\ -15 & 0 & 10 \end{bmatrix} \] Now, we take the transpose of \( C \) to get the adjoint \( \text{adj}(A) \): \[ \text{adj}(A) = C^T = \begin{bmatrix} 10 & 0 & -15 \\ 5 & -5 & 0 \\ -10 & -5 & 10 \end{bmatrix} \] ### Step 4: Calculate the Inverse of Matrix A Using the formula for the inverse: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the values we found: \[ A^{-1} = \frac{1}{5} \begin{bmatrix} 10 & 0 & -15 \\ 5 & -5 & 0 \\ -10 & -5 & 10 \end{bmatrix} \] This simplifies to: \[ A^{-1} = \begin{bmatrix} 2 & 0 & -3 \\ 1 & -1 & 0 \\ -2 & -1 & 2 \end{bmatrix} \] ### Final Answer The inverse of the matrix \( A \) is: \[ A^{-1} = \begin{bmatrix} 2 & 0 & -3 \\ 1 & -1 & 0 \\ -2 & -1 & 2 \end{bmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

The inverse of the matrix [[0, 1, 2], [1, 2, 3], [3, 1, 1]] is

The inverse of the matrix [[1, 2, 3], [-1, 1, 2], [1, 2, 4]] is

The inverse of the matrix [[3, 2, 6], [1, 1, 2], [2, 2, 5]] is

The inverse of the matrix [[1, 2, -2], [0, -2, 1], [-1, 3, 0]] is

Using elementary transformations,find the inverse of the matrix [[2,-3,32,2,33,-2,2]]

The inverse of the matrix [[1, 0, 0], [3, 3, 0], [5, 2, -1]] is

The inverse of matrix A=[[2, -3], [-4, 2]] is

The inverse of the matrix [[1, 2, -2], [-3, 0, -5], [2, 5, 0]] is

The inverse of matrix [[2, -2], [4, 3]] is

The inverse of matrix [[2, -3], [-1, 2]] is

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. The inverse of the matrix [[0, 1, 2], [1, 2, 3], [3, 1, 1]] is

    Text Solution

    |

  2. The inverse of the matrix [[2, 0, -1], [5, 1, 0], [0, 1, 3]] is

    Text Solution

    |

  3. The inverse of the matrix [[2, -3, 3], [2, 2, 3], [3, -2, 2]] is

    Text Solution

    |

  4. The inverse of the matrix [[1, 2, -2], [-3, 0, -5], [2, 5, 0]] is

    Text Solution

    |

  5. The inverse of the matrix [[1, 2, -2], [0, -2, 1], [-1, 3, 0]] is

    Text Solution

    |

  6. The inverse of the matrix [[3, 2, 6], [1, 1, 2], [2, 2, 5]] is

    Text Solution

    |

  7. The inverse of the matrix [[1, 2, 3], [-1, 1, 2], [1, 2, 4]] is

    Text Solution

    |

  8. The inverse of the matrix [[costheta, -sintheta, 0], [sintheta, costhe...

    Text Solution

    |

  9. If F(alpha)=[[cosalpha, -sinalpha, 0], [sinalpha, cosalpha, 0], [0, 0,...

    Text Solution

    |

  10. Then inverse of the matrix [[1, 0, 0], [0, costheta, sintheta], [0, si...

    Text Solution

    |

  11. If A=[[sectheta, tantheta, 0], [tantheta, sectheta, 0], [0, 0, 1]], th...

    Text Solution

    |

  12. A=[[3, 2, 6], [1, 1, 2], [2, 2, 5]], B=[[1, 2, -2], [-1, 3, 0], [0, -2...

    Text Solution

    |

  13. If A=[[1, 0, 0], [0, 1, 1], [0, -2, 4]] and A^(-1)=(1)/(6)(A^(2)+cA+dI...

    Text Solution

    |

  14. If A=[[2, 2, 1], [1, 3, 1], [1, 2, 2]], and A^(-1)+(A-5I)(A-I)^(2)=

    Text Solution

    |

  15. If A=[[1, 2, 2], [2, 1, 2], [2, 2, 1]] and A^(-1) exist and not equal ...

    Text Solution

    |

  16. If for AX=B, B=[[9], [52], [0]] and A^(-1)=[[3, -(1)/(2), -(1)/(2)], [...

    Text Solution

    |

  17. If A=[[1, 2, 3], [-1, 1, 2], [1, 2, 4]], B=[[1], [2], [3]] and AX=B, t...

    Text Solution

    |

  18. If A=[[1, 0, 1], [0, 2, 3], [1, 2, 1]], b=[[1, 2, 3], [1, 1, 5], [2, 4...

    Text Solution

    |

  19. If A=[[-2, 0, 0], [-2, -1, 3]], B=[[0, 1], [2, 3], [1, -1]], then

    Text Solution

    |

  20. If A=[[1, 2, 3], [1, -2, -3]], B=[[1, -1], [1, 2], [1, -1]], then

    Text Solution

    |