Home
Class 12
MATHS
Then inverse of the matrix [[1, 0, 0], [...

Then inverse of the matrix `[[1, 0, 0], [0, costheta, sintheta], [0, sintheta, -costheta]]` is

A

`[[-1, 0, 0], [0, -costheta, -sintheta], [0, -sintheta, costheta]]`

B

`[[costheta, sintheta, 0], [-sintheta, costheta, 0], [0, 0, 1]]`

C

`[[1, 0, 0], [0, costheta, sintheta], [0, sintheta, -costheta]]`

D

`[[1, 0, 0], [0, -costheta, -sintheta], [1, sintheta, costheta]]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & \sin \theta & -\cos \theta \end{bmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of Matrix A The determinant of a 3x3 matrix can be calculated using the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A \): \[ \text{det}(A) = 1 \cdot \left( \cos \theta \cdot (-\cos \theta) - \sin \theta \cdot \sin \theta \right) + 0 + 0 \] Calculating the determinant: \[ \text{det}(A) = 1 \cdot (-\cos^2 \theta - \sin^2 \theta) = -(\cos^2 \theta + \sin^2 \theta) = -1 \] ### Step 2: Check if the Determinant is Non-Zero Since \(\text{det}(A) = -1\) (which is not equal to 0), the inverse of the matrix exists. ### Step 3: Calculate the Adjoint of Matrix A The adjoint of a matrix is the transpose of the cofactor matrix. We will calculate the cofactor matrix \( C \). 1. **Cofactor \( C_{11} \)**: \[ C_{11} = \text{det} \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix} = (-\cos^2 \theta - \sin^2 \theta) = -1 \] 2. **Cofactor \( C_{12} \)**: \[ C_{12} = -\text{det} \begin{bmatrix} 0 & \sin \theta \\ 0 & -\cos \theta \end{bmatrix} = 0 \] 3. **Cofactor \( C_{13} \)**: \[ C_{13} = \text{det} \begin{bmatrix} 0 & \cos \theta \\ 0 & \sin \theta \end{bmatrix} = 0 \] 4. **Cofactor \( C_{21} \)**: \[ C_{21} = -\text{det} \begin{bmatrix} 0 & 0 \\ \sin \theta & -\cos \theta \end{bmatrix} = 0 \] 5. **Cofactor \( C_{22} \)**: \[ C_{22} = \text{det} \begin{bmatrix} 1 & 0 \\ 0 & -\cos \theta \end{bmatrix} = -\cos \theta \] 6. **Cofactor \( C_{23} \)**: \[ C_{23} = -\text{det} \begin{bmatrix} 1 & 0 \\ 0 & \sin \theta \end{bmatrix} = -\sin \theta \] 7. **Cofactor \( C_{31} \)**: \[ C_{31} = \text{det} \begin{bmatrix} 0 & 0 \\ \cos \theta & \sin \theta \end{bmatrix} = 0 \] 8. **Cofactor \( C_{32} \)**: \[ C_{32} = -\text{det} \begin{bmatrix} 1 & 0 \\ 0 & \sin \theta \end{bmatrix} = -\sin \theta \] 9. **Cofactor \( C_{33} \)**: \[ C_{33} = \text{det} \begin{bmatrix} 1 & 0 \\ 0 & \cos \theta \end{bmatrix} = \cos \theta \] Now, we can construct the cofactor matrix \( C \): \[ C = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -\cos \theta & -\sin \theta \\ 0 & -\sin \theta & \cos \theta \end{bmatrix} \] ### Step 4: Calculate the Adjoint of A The adjoint \( \text{adj}(A) \) is the transpose of the cofactor matrix \( C \): \[ \text{adj}(A) = C^T = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -\cos \theta & -\sin \theta \\ 0 & -\sin \theta & \cos \theta \end{bmatrix} \] ### Step 5: Calculate the Inverse of Matrix A Using the formula for the inverse of a matrix: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the values we found: \[ A^{-1} = \frac{1}{-1} \cdot \begin{bmatrix} -1 & 0 & 0 \\ 0 & -\cos \theta & -\sin \theta \\ 0 & -\sin \theta & \cos \theta \end{bmatrix} \] This simplifies to: \[ A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & \sin \theta & -\cos \theta \end{bmatrix} \] ### Final Result The inverse of the matrix \( A \) is: \[ A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & \sin \theta & -\cos \theta \end{bmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

If A=[[costheta, sintheta], [-sintheta, costheta]] , then

The inverse of the matrix [[costheta, -sintheta, 0], [sintheta, costheta, 0], [0, 0, 1]] is

Evaluate- |[costheta,sintheta],[sintheta,costheta]|

If A=[[costheta, sintheta], [-sintheta, costheta]] , then |A^(-1)|=

If A = ((costheta,-sintheta),(sintheta,costheta)) then

If sintheta+costheta=x then sintheta-costheta=?

Sintheta + Costheta = 2 Sintheta - Costheta = ?

Evaluate : |{:(costheta,-sintheta),(sintheta,costheta):}|

If Sintheta + Costheta = 1 Sintheta - Costheta = ?

Evaluate : ( sintheta + costheta ) ( sintheta - costheta )

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. The inverse of the matrix [[costheta, -sintheta, 0], [sintheta, costhe...

    Text Solution

    |

  2. If F(alpha)=[[cosalpha, -sinalpha, 0], [sinalpha, cosalpha, 0], [0, 0,...

    Text Solution

    |

  3. Then inverse of the matrix [[1, 0, 0], [0, costheta, sintheta], [0, si...

    Text Solution

    |

  4. If A=[[sectheta, tantheta, 0], [tantheta, sectheta, 0], [0, 0, 1]], th...

    Text Solution

    |

  5. A=[[3, 2, 6], [1, 1, 2], [2, 2, 5]], B=[[1, 2, -2], [-1, 3, 0], [0, -2...

    Text Solution

    |

  6. If A=[[1, 0, 0], [0, 1, 1], [0, -2, 4]] and A^(-1)=(1)/(6)(A^(2)+cA+dI...

    Text Solution

    |

  7. If A=[[2, 2, 1], [1, 3, 1], [1, 2, 2]], and A^(-1)+(A-5I)(A-I)^(2)=

    Text Solution

    |

  8. If A=[[1, 2, 2], [2, 1, 2], [2, 2, 1]] and A^(-1) exist and not equal ...

    Text Solution

    |

  9. If for AX=B, B=[[9], [52], [0]] and A^(-1)=[[3, -(1)/(2), -(1)/(2)], [...

    Text Solution

    |

  10. If A=[[1, 2, 3], [-1, 1, 2], [1, 2, 4]], B=[[1], [2], [3]] and AX=B, t...

    Text Solution

    |

  11. If A=[[1, 0, 1], [0, 2, 3], [1, 2, 1]], b=[[1, 2, 3], [1, 1, 5], [2, 4...

    Text Solution

    |

  12. If A=[[-2, 0, 0], [-2, -1, 3]], B=[[0, 1], [2, 3], [1, -1]], then

    Text Solution

    |

  13. If A=[[1, 2, 3], [1, -2, -3]], B=[[1, -1], [1, 2], [1, -1]], then

    Text Solution

    |

  14. If A=[[2, 2], [-3, 2]] and B=[[0, -1], [1, 0]], then (B^(-1)A^(-1))^(-...

    Text Solution

    |

  15. If A=[[2, 2], [-3, 2]] and B=[[0, -1], [1, 0]], then (B^(-1)A^(-1))^(-...

    Text Solution

    |

  16. If A=[[4, 1], [2, 3]] and B=[[2, 1], [0, -2]], then (AB)^(-1)=

    Text Solution

    |

  17. If A=[[2, 3], [1, 2]], B=[[3, 1], [0, 3]] then B^(-1)A^(-1)=

    Text Solution

    |

  18. If A=[[2, 3], [7, 11]], B=[[1, 0], [3, 1]] then (AB)^(-1)=

    Text Solution

    |

  19. If F(alpha)=[(cosalpha, -sinalpha,0),(sinalpha, cosalpha, 0),(0,0,1)] ...

    Text Solution

    |

  20. Let A=((1,0,0),(2,1,0),(3,2,1)). If u(1) and u(2) are column matrices ...

    Text Solution

    |