Home
Class 12
MATHS
If A=[[1, 2, 2], [2, 1, 2], [2, 2, 1]] a...

If `A=[[1, 2, 2], [2, 1, 2], [2, 2, 1]] and A^(-1)` exist and not equal to 0, then `(A^(2)-4A)A^(-1)=`

A

`[[-3, 2, 2], [2, -3, 2], [2, 2, -3]]`

B

`[[3, 2, 2], [2, 3, 2], [2, 2, 3]]`

C

`[[5, 2, 0], [2, 5, 0], [0, 2,5]]`

D

`[[5, 2, 5], [2, 5, 5], [5, 5, 2]]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression \((A^2 - 4A)A^{-1}\) given the matrix \(A\) and the conditions specified. Let's go through the steps systematically. ### Step 1: Calculate \(A^2\) First, we need to compute \(A^2\), which is \(A \times A\). Given: \[ A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} \] Calculating \(A^2\): \[ A^2 = A \times A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} \] Calculating each element of \(A^2\): - First row: - \(1 \cdot 1 + 2 \cdot 2 + 2 \cdot 2 = 1 + 4 + 4 = 9\) - \(1 \cdot 2 + 2 \cdot 1 + 2 \cdot 2 = 2 + 2 + 4 = 8\) - \(1 \cdot 2 + 2 \cdot 2 + 2 \cdot 1 = 2 + 4 + 2 = 8\) - Second row: - \(2 \cdot 1 + 1 \cdot 2 + 2 \cdot 2 = 2 + 2 + 4 = 8\) - \(2 \cdot 2 + 1 \cdot 1 + 2 \cdot 2 = 4 + 1 + 4 = 9\) - \(2 \cdot 2 + 1 \cdot 2 + 2 \cdot 1 = 4 + 2 + 2 = 8\) - Third row: - \(2 \cdot 1 + 2 \cdot 2 + 1 \cdot 2 = 2 + 4 + 2 = 8\) - \(2 \cdot 2 + 2 \cdot 1 + 1 \cdot 2 = 4 + 2 + 2 = 8\) - \(2 \cdot 2 + 2 \cdot 2 + 1 \cdot 1 = 4 + 4 + 1 = 9\) Thus, we have: \[ A^2 = \begin{bmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{bmatrix} \] ### Step 2: Calculate \(4A\) Next, we compute \(4A\): \[ 4A = 4 \times \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 8 & 8 \\ 8 & 4 & 8 \\ 8 & 8 & 4 \end{bmatrix} \] ### Step 3: Calculate \(A^2 - 4A\) Now we subtract \(4A\) from \(A^2\): \[ A^2 - 4A = \begin{bmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{bmatrix} - \begin{bmatrix} 4 & 8 & 8 \\ 8 & 4 & 8 \\ 8 & 8 & 4 \end{bmatrix} \] Calculating each element: - First row: - \(9 - 4 = 5\) - \(8 - 8 = 0\) - \(8 - 8 = 0\) - Second row: - \(8 - 8 = 0\) - \(9 - 4 = 5\) - \(8 - 8 = 0\) - Third row: - \(8 - 8 = 0\) - \(8 - 8 = 0\) - \(9 - 4 = 5\) Thus, we have: \[ A^2 - 4A = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix} \] ### Step 4: Calculate \((A^2 - 4A)A^{-1}\) Now we need to multiply \((A^2 - 4A)\) by \(A^{-1}\). Since \(A^{-1}\) exists, we can denote: \[ A^{-1} = \text{(some matrix)} \] Using the property that \(A \cdot A^{-1} = I\) (identity matrix), we can express: \[ (A^2 - 4A)A^{-1} = 5I \] Where \(I\) is the identity matrix: \[ I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \] Thus, \[ (A^2 - 4A)A^{-1} = 5 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix} \] ### Final Answer \[ (A^2 - 4A)A^{-1} = 5I = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

If A=[(1,4,4),(4,1,4),(4,4,1)] and A^(-1) exists and not equal to zero ,then (A^(2)-8A)A^(-1) =

If A=[[1, -1, 2], [0, 2, -3], [3, -2, 4]] , then |A^(-1)|=

If A=[[1,-2,3],[0,-1,4],[-2,2,1]], then find |A| .

If A=[(1,2,2),(2,1,2),(2,2,1)] then A^(2)-4A is equal to

Let A= [[1,0,2],[2,0,1],[1,1,2]] then det((A-I)^(3)-4A) is

If A=[(2,2),(-3,2)], B=[(0,-1),(1,0)] then (B^(-1)A^(-1))^(-1) is equal to

2. | [1 ,1 ,1 ],[4 ,3 ,2], [4^(2) ,3^(2), 2^(2)] | is equal to

If A=[(1, 0,0),(0,1,0),(a,b,-1)] and I is the unit matrix of order 3, then A^(2)+2A^(4)+4A^(6) is equal to

If A=[(3,4,1),(1,0,-2),(-2,-1,2)] then A^(-1) =?

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. If A=[[1, 0, 0], [0, 1, 1], [0, -2, 4]] and A^(-1)=(1)/(6)(A^(2)+cA+dI...

    Text Solution

    |

  2. If A=[[2, 2, 1], [1, 3, 1], [1, 2, 2]], and A^(-1)+(A-5I)(A-I)^(2)=

    Text Solution

    |

  3. If A=[[1, 2, 2], [2, 1, 2], [2, 2, 1]] and A^(-1) exist and not equal ...

    Text Solution

    |

  4. If for AX=B, B=[[9], [52], [0]] and A^(-1)=[[3, -(1)/(2), -(1)/(2)], [...

    Text Solution

    |

  5. If A=[[1, 2, 3], [-1, 1, 2], [1, 2, 4]], B=[[1], [2], [3]] and AX=B, t...

    Text Solution

    |

  6. If A=[[1, 0, 1], [0, 2, 3], [1, 2, 1]], b=[[1, 2, 3], [1, 1, 5], [2, 4...

    Text Solution

    |

  7. If A=[[-2, 0, 0], [-2, -1, 3]], B=[[0, 1], [2, 3], [1, -1]], then

    Text Solution

    |

  8. If A=[[1, 2, 3], [1, -2, -3]], B=[[1, -1], [1, 2], [1, -1]], then

    Text Solution

    |

  9. If A=[[2, 2], [-3, 2]] and B=[[0, -1], [1, 0]], then (B^(-1)A^(-1))^(-...

    Text Solution

    |

  10. If A=[[2, 2], [-3, 2]] and B=[[0, -1], [1, 0]], then (B^(-1)A^(-1))^(-...

    Text Solution

    |

  11. If A=[[4, 1], [2, 3]] and B=[[2, 1], [0, -2]], then (AB)^(-1)=

    Text Solution

    |

  12. If A=[[2, 3], [1, 2]], B=[[3, 1], [0, 3]] then B^(-1)A^(-1)=

    Text Solution

    |

  13. If A=[[2, 3], [7, 11]], B=[[1, 0], [3, 1]] then (AB)^(-1)=

    Text Solution

    |

  14. If F(alpha)=[(cosalpha, -sinalpha,0),(sinalpha, cosalpha, 0),(0,0,1)] ...

    Text Solution

    |

  15. Let A=((1,0,0),(2,1,0),(3,2,1)). If u(1) and u(2) are column matrices ...

    Text Solution

    |

  16. Equations x + y = 2, 2x + 2y = 3 will have

    Text Solution

    |

  17. If [(x-y-z),(-y+z),(z)]=[(0),(5),(3)] then the values of x,y and z are...

    Text Solution

    |

  18. If [[1, 1, 1], [1, -2, -2], [1, 3, 1]][[x], [y], [z]]=[[0], [3], [4]],...

    Text Solution

    |

  19. If A=[[1, -1, -2], [2, 1, 1], [4, -1, 2]], B=[[3], [5], [11]], X=[[x],...

    Text Solution

    |

  20. If [[x], [y], [z]]=(1)/(40)[[5, 10, -5], [-5, -2, 13], [10, -4, 6]][[5...

    Text Solution

    |