Home
Class 12
MATHS
If F(alpha)=[(cosalpha, -sinalpha,0),(si...

If `F(alpha)=[(cosalpha, -sinalpha,0),(sinalpha, cosalpha, 0),(0,0,1)] and G(beta)=[(cosbeta, 0, sinbeta),(0, 1, 0),(-sinbeta, 0, cosbeta)], then [F(alpha)G(beta)]^-1` is equal to (A) `F(-alpha)G(-beta)` (B) `G(-beta)F(-alpha0` (C) `F(alpha^-1)G(beta^-1)` (D) `G(beta^-1)F(alpha^-1)`

A

`F(alpha)-G(beta)`

B

`-F(alpha)-G(beta)`

C

`(F(alpha))^(-1)(G(beta))^(-1)`

D

`(G(beta))^(-1)(F(alpha))^(-1)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

Let F(alpha)=[{:(cosalpha,-sinalpha,0),(sinalpha,cosalpha,0),(0,0,1):}] and G(beta)=[{:(cosbeta,0,sinbeta),(0,1,0),(-sinbeta,0,cosbeta):}] . Show that [F(alpha).G(beta)]^(-1)=G(-beta).F(-alpha) .

Let F(alpha)=[cos alpha-sin alpha0sin alpha cos alpha0001] and G(beta)=[cos beta0sin beta010-sin beta0cos beta] Show that [F(alpha)]^(-1)=F(-alpha)(ii)[G(beta)]^(-1)=G(-beta)( iii) [F(alpha)G(beta)]^(-1)=G(-beta)F(-alpha)

If F(alpha)=[[cosalpha, -sinalpha, 0], [sinalpha, cosalpha, 0], [0, 0, 1]] , where alphainR , then (F(alpha))^(-1)=

If A(alpha, beta)=[("cos" alpha,sin alpha,0),(-sin alpha,cos alpha,0),(0,0,e^(beta))] , then A(alpha, beta)^(-1) is equal to

Statement 1: If f(alpha)=[[cosalpha,-sinalpha,0],[sinalpha,cosalpha,0],[ 0, 0, 1]],t h e n [F(alpha)]^(-1)=F(-alpha)dot Statement 2: For matrix G(beta)=[[cosbeta,0,sinbeta],[0, 1, 0],[-sinbeta,0,cosbeta]]dot we have [G(beta)]^(-1)=G(-beta)dot

If cos (alpha+beta)=0 , then sin(alpha-beta) canbe reduced to : (a) cosbeta (b) cos2beta ( c) sinalpha (d) sin2alpha

| alpha alpha1 beta F|=(alpha-P)(beta-alpha)

Prove that: |(sinalpha, cosalpha, 1),(sinbeta, cosbeta, 1),(singamma, cosgamma, 1)|=sin(alpha-beta)+sin(beta-gamma)+sin(gamma-alpha)

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. If A=[[1, 2, 3], [1, -2, -3]], B=[[1, -1], [1, 2], [1, -1]], then

    Text Solution

    |

  2. If A=[[2, 2], [-3, 2]] and B=[[0, -1], [1, 0]], then (B^(-1)A^(-1))^(-...

    Text Solution

    |

  3. If A=[[2, 2], [-3, 2]] and B=[[0, -1], [1, 0]], then (B^(-1)A^(-1))^(-...

    Text Solution

    |

  4. If A=[[4, 1], [2, 3]] and B=[[2, 1], [0, -2]], then (AB)^(-1)=

    Text Solution

    |

  5. If A=[[2, 3], [1, 2]], B=[[3, 1], [0, 3]] then B^(-1)A^(-1)=

    Text Solution

    |

  6. If A=[[2, 3], [7, 11]], B=[[1, 0], [3, 1]] then (AB)^(-1)=

    Text Solution

    |

  7. If F(alpha)=[(cosalpha, -sinalpha,0),(sinalpha, cosalpha, 0),(0,0,1)] ...

    Text Solution

    |

  8. Let A=((1,0,0),(2,1,0),(3,2,1)). If u(1) and u(2) are column matrices ...

    Text Solution

    |

  9. Equations x + y = 2, 2x + 2y = 3 will have

    Text Solution

    |

  10. If [(x-y-z),(-y+z),(z)]=[(0),(5),(3)] then the values of x,y and z are...

    Text Solution

    |

  11. If [[1, 1, 1], [1, -2, -2], [1, 3, 1]][[x], [y], [z]]=[[0], [3], [4]],...

    Text Solution

    |

  12. If A=[[1, -1, -2], [2, 1, 1], [4, -1, 2]], B=[[3], [5], [11]], X=[[x],...

    Text Solution

    |

  13. If [[x], [y], [z]]=(1)/(40)[[5, 10, -5], [-5, -2, 13], [10, -4, 6]][[5...

    Text Solution

    |

  14. The values of x, y, z for the equations x+y+z=1, 2x+3y+2z=2, ax+ay+2az...

    Text Solution

    |

  15. The values of x, y, z for the equations 5x-y+4z=5, 2x+3y+5z=2, 5x-2y+6...

    Text Solution

    |

  16. The values of x, y, z for the equations x-y+z=1, 2x-y=1, 3x+3y-4z=2 ar...

    Text Solution

    |

  17. The values of x, y, z for the equations x+y+z=6, 3x-y+2z=7, 5x+5y-4z=3...

    Text Solution

    |

  18. Solve the following equations by the method of reduction 2x-y+z=1, x...

    Text Solution

    |

  19. If the inverse of the matriix [(alpha,14,-1),(2,3,1),(6,2,3)] does not...

    Text Solution

    |

  20. if A=[[2,-3],[-4,1]] then (3A^2+12A)=?

    Text Solution

    |