Home
Class 12
MATHS
If [[x], [y], [z]]=(1)/(40)[[5, 10, -5],...

If `[[x], [y], [z]]=(1)/(40)[[5, 10, -5], [-5, -2, 13], [10, -4, 6]][[5], [0], [5]]`, then `x+y+z=`

A

`3`

B

`0`

C

`2`

D

`1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \(x\), \(y\), and \(z\) from the given matrix equation: \[ \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{40} \begin{bmatrix} 5 & 10 & -5 \\ -5 & -2 & 13 \\ 10 & -4 & 6 \end{bmatrix} \begin{bmatrix} 5 \\ 0 \\ 5 \end{bmatrix} \] ### Step 1: Calculate the matrix product First, we will multiply the two matrices on the right-hand side. Let: \[ A = \begin{bmatrix} 5 & 10 & -5 \\ -5 & -2 & 13 \\ 10 & -4 & 6 \end{bmatrix}, \quad B = \begin{bmatrix} 5 \\ 0 \\ 5 \end{bmatrix} \] To find \(AB\), we calculate each element of the resulting matrix: 1. First row: \[ 5 \cdot 5 + 10 \cdot 0 + (-5) \cdot 5 = 25 + 0 - 25 = 0 \] 2. Second row: \[ -5 \cdot 5 + (-2) \cdot 0 + 13 \cdot 5 = -25 + 0 + 65 = 40 \] 3. Third row: \[ 10 \cdot 5 + (-4) \cdot 0 + 6 \cdot 5 = 50 + 0 + 30 = 80 \] Thus, the product \(AB\) is: \[ AB = \begin{bmatrix} 0 \\ 40 \\ 80 \end{bmatrix} \] ### Step 2: Multiply by \(\frac{1}{40}\) Now we multiply the resulting matrix by \(\frac{1}{40}\): \[ \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{40} \begin{bmatrix} 0 \\ 40 \\ 80 \end{bmatrix} = \begin{bmatrix} \frac{0}{40} \\ \frac{40}{40} \\ \frac{80}{40} \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} \] From this, we can identify: \[ x = 0, \quad y = 1, \quad z = 2 \] ### Step 3: Calculate \(x + y + z\) Now, we can find \(x + y + z\): \[ x + y + z = 0 + 1 + 2 = 3 \] ### Final Answer Thus, the final answer is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

If [[x-y,z],[2x-y,omega]] = [[-1,4], [0,5]], find x,y,z,w

If [[x-y, 2x+z],[2x-y,3z+omega]] =[[-1,5],[0,13]] find x,y,z,omega

If [(x-y,2x-y),(2x+z,3z+w)]=[(-1,0),(5,13)]

The solutions of the linear system of [[2,2,2],[7,1,1],[0,6,5]][[x],[y],[z]]=[[3y+11],[6z-1],[5y+11]]+[[x],[x],[4z]]+[[z],[3x],[4y]] is

The solution of the linear system of equation [[2,2,3],[7,1,1],[0,6,5]][[x],[y],[z]]=[[3y+11],[6z-1],[5y+11]]+[[x],[x],[4z]]+[[z],[3x],[4y]] has

" The solutions of the linear system of equations "[[2,2,3],[7,1,1],[0,6,5]][[x],[y],[z]]=[[3y+11],[6z-1],[5y+11]]+[[x],[x],[4z]]+[[z],[3x],[4y]],is

If 10x+2y ge20, 5x+5y ge 30, x ge0, y ge0 , then minimum of z=5x+2y is

5x + 10 y - 15 z = 5 (x + 2y - 3z)

2x + 3y-5z = 7, x + y + z = 6,3x-4y + 2z = 1, then x =

If A = [(5, -1, 4), (2, 3, 5), (5, -2, 6)] , find A^(-1) and use it to solve the following system of equation 5x - y + 4z = 5, 2x + 3y +5z = 2, 5x - 2y + 6z =-1

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. If A=[[1, 2, 3], [1, -2, -3]], B=[[1, -1], [1, 2], [1, -1]], then

    Text Solution

    |

  2. If A=[[2, 2], [-3, 2]] and B=[[0, -1], [1, 0]], then (B^(-1)A^(-1))^(-...

    Text Solution

    |

  3. If A=[[2, 2], [-3, 2]] and B=[[0, -1], [1, 0]], then (B^(-1)A^(-1))^(-...

    Text Solution

    |

  4. If A=[[4, 1], [2, 3]] and B=[[2, 1], [0, -2]], then (AB)^(-1)=

    Text Solution

    |

  5. If A=[[2, 3], [1, 2]], B=[[3, 1], [0, 3]] then B^(-1)A^(-1)=

    Text Solution

    |

  6. If A=[[2, 3], [7, 11]], B=[[1, 0], [3, 1]] then (AB)^(-1)=

    Text Solution

    |

  7. If F(alpha)=[(cosalpha, -sinalpha,0),(sinalpha, cosalpha, 0),(0,0,1)] ...

    Text Solution

    |

  8. Let A=((1,0,0),(2,1,0),(3,2,1)). If u(1) and u(2) are column matrices ...

    Text Solution

    |

  9. Equations x + y = 2, 2x + 2y = 3 will have

    Text Solution

    |

  10. If [(x-y-z),(-y+z),(z)]=[(0),(5),(3)] then the values of x,y and z are...

    Text Solution

    |

  11. If [[1, 1, 1], [1, -2, -2], [1, 3, 1]][[x], [y], [z]]=[[0], [3], [4]],...

    Text Solution

    |

  12. If A=[[1, -1, -2], [2, 1, 1], [4, -1, 2]], B=[[3], [5], [11]], X=[[x],...

    Text Solution

    |

  13. If [[x], [y], [z]]=(1)/(40)[[5, 10, -5], [-5, -2, 13], [10, -4, 6]][[5...

    Text Solution

    |

  14. The values of x, y, z for the equations x+y+z=1, 2x+3y+2z=2, ax+ay+2az...

    Text Solution

    |

  15. The values of x, y, z for the equations 5x-y+4z=5, 2x+3y+5z=2, 5x-2y+6...

    Text Solution

    |

  16. The values of x, y, z for the equations x-y+z=1, 2x-y=1, 3x+3y-4z=2 ar...

    Text Solution

    |

  17. The values of x, y, z for the equations x+y+z=6, 3x-y+2z=7, 5x+5y-4z=3...

    Text Solution

    |

  18. Solve the following equations by the method of reduction 2x-y+z=1, x...

    Text Solution

    |

  19. If the inverse of the matriix [(alpha,14,-1),(2,3,1),(6,2,3)] does not...

    Text Solution

    |

  20. if A=[[2,-3],[-4,1]] then (3A^2+12A)=?

    Text Solution

    |