Home
Class 12
MATHS
The values of x, y, z for the equations ...

The values of x, y, z for the equations `x+y+z=1, 2x+3y+2z=2, ax+ay+2az=4` are

A

`x=2-(4)/(a), y=0, z=(4)/(a)-1`

B

`x=2+(4)/(a), y=0, z=(4)/(a)-1`

C

`x=2-(4)/(a), y=0, z=(4)/(a)+1`

D

`x=2+(4)/(a), y=0, z=(4)/(a)+1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of equations given by: 1. \( x + y + z = 1 \) (Equation 1) 2. \( 2x + 3y + 2z = 2 \) (Equation 2) 3. \( ax + ay + 2az = 4 \) (Equation 3) We will express this system in matrix form \( Ax = B \), where \( A \) is the coefficient matrix, \( x \) is the variable matrix, and \( B \) is the constant matrix. ### Step 1: Write the equations in matrix form The coefficient matrix \( A \) is: \[ A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ a & a & 2a \end{bmatrix} \] The variable matrix \( x \) is: \[ x = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \] The constant matrix \( B \) is: \[ B = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix} \] Thus, the matrix equation can be written as: \[ \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ a & a & 2a \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix} \] ### Step 2: Find the determinant of matrix \( A \) To find the inverse of matrix \( A \), we first need to calculate its determinant \( |A| \): \[ |A| = 1 \cdot (3 \cdot 2a - 2 \cdot a) - 1 \cdot (2 \cdot 2a - 2 \cdot a) + 1 \cdot (2 \cdot a - 3 \cdot a) \] Calculating the determinant: \[ |A| = 1 \cdot (6a - 2a) - 1 \cdot (4a - 2a) + 1 \cdot (2a - 3a) \] \[ = 1 \cdot 4a - 1 \cdot 2a - 1 \cdot a \] \[ = 4a - 2a - a = a \] ### Step 3: Find the adjoint of matrix \( A \) To find the adjoint of \( A \), we need to calculate the cofactor matrix and then take its transpose. The cofactor matrix \( C \) is calculated as follows: \[ C = \begin{bmatrix} \text{C}_{11} & \text{C}_{12} & \text{C}_{13} \\ \text{C}_{21} & \text{C}_{22} & \text{C}_{23} \\ \text{C}_{31} & \text{C}_{32} & \text{C}_{33} \end{bmatrix} \] Where each cofactor \( \text{C}_{ij} \) is calculated by removing the \( i \)-th row and \( j \)-th column and finding the determinant of the resulting \( 2 \times 2 \) matrix, multiplied by \( (-1)^{i+j} \). Calculating the cofactors, we find: \[ C = \begin{bmatrix} 6a - 2a & - (4a - 2a) & 2a - 3a \\ - (2a - a) & 0 & -1 \\ 2 - 2 & 0 & 1 \end{bmatrix} \] Thus, the cofactor matrix is: \[ C = \begin{bmatrix} 4a & -2a & -a \\ -a & 0 & -1 \\ 0 & 0 & 1 \end{bmatrix} \] Taking the transpose gives us the adjoint: \[ \text{adj}(A) = \begin{bmatrix} 4a & -a & 0 \\ -2a & 0 & 0 \\ -a & -1 & 1 \end{bmatrix} \] ### Step 4: Calculate the inverse of matrix \( A \) The inverse of \( A \) is given by: \[ A^{-1} = \frac{1}{|A|} \cdot \text{adj}(A) \] Substituting the determinant: \[ A^{-1} = \frac{1}{a} \begin{bmatrix} 4a & -a & 0 \\ -2a & 0 & 0 \\ -a & -1 & 1 \end{bmatrix} = \begin{bmatrix} 4 & -1 & 0 \\ -2 & 0 & 0 \\ -\frac{1}{a} & -\frac{1}{a} & \frac{1}{a} \end{bmatrix} \] ### Step 5: Solve for \( x, y, z \) Now we can find \( x \) by multiplying \( A^{-1} \) with \( B \): \[ \begin{bmatrix} x \\ y \\ z \end{bmatrix} = A^{-1} B = \begin{bmatrix} 4 & -1 & 0 \\ -2 & 0 & 0 \\ -\frac{1}{a} & -\frac{1}{a} & \frac{1}{a} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix} \] Calculating this gives: \[ = \begin{bmatrix} 4 \cdot 1 - 1 \cdot 2 + 0 \cdot 4 \\ -2 \cdot 1 + 0 \cdot 2 + 0 \cdot 4 \\ -\frac{1}{a} \cdot 1 - \frac{1}{a} \cdot 2 + \frac{1}{a} \cdot 4 \end{bmatrix} \] Calculating each component: 1. \( x = 4 - 2 = 2 \) 2. \( y = -2 \) 3. \( z = -\frac{1}{a} - \frac{2}{a} + \frac{4}{a} = \frac{1}{a} \) Thus, the values of \( x, y, z \) are: \[ x = 2 - \frac{4}{a}, \quad y = 0, \quad z = \frac{4}{a} - 1 \] ### Final Answer: The values of \( x, y, z \) are: - \( x = 2 - \frac{4}{a} \) - \( y = 0 \) - \( z = \frac{4}{a} - 1 \)
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

The values of x, y, z for the equations 5x-y+4z=5, 2x+3y+5z=2, 5x-2y+6z=1 are

The values of x, y, z for the equations x-y+z=1, 2x-y=1, 3x+3y-4z=2 are

The value of 'a' for which the equations 3x-y+az=1,2x+y+z=2,x+2y-az=-1 fail to have unique solution is

The value of a for whch the sytem of equations x+ay+z=1 ax+y+z=1 x+y+az=1 has no solution is

The equations x+2y+3z=1 2x+y+3z=1 5x+5y+9z=4

The values of x,y,z in order of the system of equations 3x+y+2z=3,2x-3y-z=-3,x+2y+z=4, are (A)2,1,5(B)1,1,1(C)1,-2,-1(D)1,2,-1

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. If A=[[1, 2, 3], [1, -2, -3]], B=[[1, -1], [1, 2], [1, -1]], then

    Text Solution

    |

  2. If A=[[2, 2], [-3, 2]] and B=[[0, -1], [1, 0]], then (B^(-1)A^(-1))^(-...

    Text Solution

    |

  3. If A=[[2, 2], [-3, 2]] and B=[[0, -1], [1, 0]], then (B^(-1)A^(-1))^(-...

    Text Solution

    |

  4. If A=[[4, 1], [2, 3]] and B=[[2, 1], [0, -2]], then (AB)^(-1)=

    Text Solution

    |

  5. If A=[[2, 3], [1, 2]], B=[[3, 1], [0, 3]] then B^(-1)A^(-1)=

    Text Solution

    |

  6. If A=[[2, 3], [7, 11]], B=[[1, 0], [3, 1]] then (AB)^(-1)=

    Text Solution

    |

  7. If F(alpha)=[(cosalpha, -sinalpha,0),(sinalpha, cosalpha, 0),(0,0,1)] ...

    Text Solution

    |

  8. Let A=((1,0,0),(2,1,0),(3,2,1)). If u(1) and u(2) are column matrices ...

    Text Solution

    |

  9. Equations x + y = 2, 2x + 2y = 3 will have

    Text Solution

    |

  10. If [(x-y-z),(-y+z),(z)]=[(0),(5),(3)] then the values of x,y and z are...

    Text Solution

    |

  11. If [[1, 1, 1], [1, -2, -2], [1, 3, 1]][[x], [y], [z]]=[[0], [3], [4]],...

    Text Solution

    |

  12. If A=[[1, -1, -2], [2, 1, 1], [4, -1, 2]], B=[[3], [5], [11]], X=[[x],...

    Text Solution

    |

  13. If [[x], [y], [z]]=(1)/(40)[[5, 10, -5], [-5, -2, 13], [10, -4, 6]][[5...

    Text Solution

    |

  14. The values of x, y, z for the equations x+y+z=1, 2x+3y+2z=2, ax+ay+2az...

    Text Solution

    |

  15. The values of x, y, z for the equations 5x-y+4z=5, 2x+3y+5z=2, 5x-2y+6...

    Text Solution

    |

  16. The values of x, y, z for the equations x-y+z=1, 2x-y=1, 3x+3y-4z=2 ar...

    Text Solution

    |

  17. The values of x, y, z for the equations x+y+z=6, 3x-y+2z=7, 5x+5y-4z=3...

    Text Solution

    |

  18. Solve the following equations by the method of reduction 2x-y+z=1, x...

    Text Solution

    |

  19. If the inverse of the matriix [(alpha,14,-1),(2,3,1),(6,2,3)] does not...

    Text Solution

    |

  20. if A=[[2,-3],[-4,1]] then (3A^2+12A)=?

    Text Solution

    |