Home
Class 12
MATHS
The values of x, y, z for the equations ...

The values of x, y, z for the equations `5x-y+4z=5, 2x+3y+5z=2, 5x-2y+6z=1` are

A

`x=3, y=3, z=-2`

B

`x=1, y=2, z=1`

C

`x=1, y=3, z=5`

D

`x=3, y=2, z=-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of equations given by: 1. \( 5x - y + 4z = 5 \) 2. \( 2x + 3y + 5z = 2 \) 3. \( 5x - 2y + 6z = 1 \) we can express this in matrix form \( AX = B \), where: \[ A = \begin{bmatrix} 5 & -1 & 4 \\ 2 & 3 & 5 \\ 5 & -2 & 6 \end{bmatrix}, \quad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad B = \begin{bmatrix} 5 \\ 2 \\ 1 \end{bmatrix} \] ### Step 1: Find the Determinant of Matrix A To find \( X \), we first need to calculate the determinant of matrix \( A \). \[ \text{det}(A) = 5 \cdot (3 \cdot 6 - 5 \cdot (-2)) - (-1) \cdot (2 \cdot 6 - 5 \cdot 5) + 4 \cdot (2 \cdot (-2) - 3 \cdot 5) \] Calculating each term: 1. \( 5 \cdot (18 + 10) = 5 \cdot 28 = 140 \) 2. \( -(-1) \cdot (12 - 25) = 1 \cdot (-13) = -13 \) 3. \( 4 \cdot (-4 - 15) = 4 \cdot (-19) = -76 \) Putting it all together: \[ \text{det}(A) = 140 - 13 - 76 = 51 \] ### Step 2: Find the Adjoint of Matrix A Next, we need to find the cofactor matrix of \( A \) and then take its transpose to get the adjoint. Calculating the cofactors: 1. The cofactor for \( a_{11} \) (5): \( C_{11} = 3 \cdot 6 - 5 \cdot (-2) = 28 \) 2. The cofactor for \( a_{12} \) (-1): \( C_{12} = -(2 \cdot 6 - 5 \cdot 5) = 13 \) 3. The cofactor for \( a_{13} \) (4): \( C_{13} = 2 \cdot (-2) - 3 \cdot 5 = -19 \) 4. The cofactor for \( a_{21} \) (2): \( C_{21} = -(5 \cdot 6 - 4 \cdot (-2)) = -38 \) 5. The cofactor for \( a_{22} \) (3): \( C_{22} = 5 \cdot 6 - 4 \cdot 5 = 10 \) 6. The cofactor for \( a_{23} \) (5): \( C_{23} = 5 \cdot (-2) - 5 \cdot 5 = -35 \) 7. The cofactor for \( a_{31} \) (5): \( C_{31} = 2 \cdot 3 - 5 \cdot (-1) = 11 \) 8. The cofactor for \( a_{32} \) (-2): \( C_{32} = 5 \cdot 4 - 2 \cdot 5 = 10 \) 9. The cofactor for \( a_{33} \) (6): \( C_{33} = 5 \cdot (-1) - 2 \cdot 3 = -11 \) The cofactor matrix is: \[ \text{Cof}(A) = \begin{bmatrix} 28 & -13 & -19 \\ -38 & 10 & -35 \\ 11 & 10 & -11 \end{bmatrix} \] Taking the transpose to get the adjoint: \[ \text{adj}(A) = \begin{bmatrix} 28 & -38 & 11 \\ -13 & 10 & 10 \\ -19 & -35 & -11 \end{bmatrix} \] ### Step 3: Find the Inverse of Matrix A Now, we can find the inverse of matrix \( A \): \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) = \frac{1}{51} \cdot \begin{bmatrix} 28 & -38 & 11 \\ -13 & 10 & 10 \\ -19 & -35 & -11 \end{bmatrix} \] ### Step 4: Solve for X Now we can find \( X \): \[ X = A^{-1}B = \frac{1}{51} \begin{bmatrix} 28 & -38 & 11 \\ -13 & 10 & 10 \\ -19 & -35 & -11 \end{bmatrix} \begin{bmatrix} 5 \\ 2 \\ 1 \end{bmatrix} \] Calculating the product: 1. First row: \( 28 \cdot 5 - 38 \cdot 2 + 11 \cdot 1 = 140 - 76 + 11 = 75 \) 2. Second row: \( -13 \cdot 5 + 10 \cdot 2 + 10 \cdot 1 = -65 + 20 + 10 = -35 \) 3. Third row: \( -19 \cdot 5 - 35 \cdot 2 - 11 \cdot 1 = -95 - 70 - 11 = -176 \) Thus, \[ X = \frac{1}{51} \begin{bmatrix} 75 \\ -35 \\ -176 \end{bmatrix} = \begin{bmatrix} \frac{75}{51} \\ \frac{-35}{51} \\ \frac{-176}{51} \end{bmatrix} \] ### Final Values So the values of \( x, y, z \) are: \[ x = \frac{75}{51}, \quad y = \frac{-35}{51}, \quad z = \frac{-176}{51} \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

The values of x, y, z for the equations x-y+z=1, 2x-y=1, 3x+3y-4z=2 are

The values of x, y, z for the equations x+y+z=6, 3x-y+2z=7, 5x+5y-4z=3 are

Examine the consistency of the system of equations 5x -y + 4z = 5," " 2x + 3y + 5z = 2," " 5x -2y + 6z = 1

If A = [(5, -1, 4), (2, 3, 5), (5, -2, 6)] , find A^(-1) and use it to solve the following system of equation 5x - y + 4z = 5, 2x + 3y +5z = 2, 5x - 2y + 6z =-1

If A = [(5, -1, 4), (2, 3, 5), (5, -2, 6)] , find A^(-1) and use it to solve the following system of equation 5x - y + 4z = 5, 2x + 3y +5z = 2, 5x - 2y + 6z =-1

The value of x, y, z for the following system of equations x + y + z = 6, x - y + 2z = 5, 2x + y - z = 1 are

The equations 2x-3y+6z=4, 5x+7y-14z=1 3x+2y-4z=0, have

Examine the consistency of the system of equations in questions 1 to 6. 5x-y+4z=5, 2x+3y+5z=2, 5x-2y+6z=-1

The equations x+2y+3z=1 2x+y+3z=1 5x+5y+9z=4

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. If A=[[1, 2, 3], [1, -2, -3]], B=[[1, -1], [1, 2], [1, -1]], then

    Text Solution

    |

  2. If A=[[2, 2], [-3, 2]] and B=[[0, -1], [1, 0]], then (B^(-1)A^(-1))^(-...

    Text Solution

    |

  3. If A=[[2, 2], [-3, 2]] and B=[[0, -1], [1, 0]], then (B^(-1)A^(-1))^(-...

    Text Solution

    |

  4. If A=[[4, 1], [2, 3]] and B=[[2, 1], [0, -2]], then (AB)^(-1)=

    Text Solution

    |

  5. If A=[[2, 3], [1, 2]], B=[[3, 1], [0, 3]] then B^(-1)A^(-1)=

    Text Solution

    |

  6. If A=[[2, 3], [7, 11]], B=[[1, 0], [3, 1]] then (AB)^(-1)=

    Text Solution

    |

  7. If F(alpha)=[(cosalpha, -sinalpha,0),(sinalpha, cosalpha, 0),(0,0,1)] ...

    Text Solution

    |

  8. Let A=((1,0,0),(2,1,0),(3,2,1)). If u(1) and u(2) are column matrices ...

    Text Solution

    |

  9. Equations x + y = 2, 2x + 2y = 3 will have

    Text Solution

    |

  10. If [(x-y-z),(-y+z),(z)]=[(0),(5),(3)] then the values of x,y and z are...

    Text Solution

    |

  11. If [[1, 1, 1], [1, -2, -2], [1, 3, 1]][[x], [y], [z]]=[[0], [3], [4]],...

    Text Solution

    |

  12. If A=[[1, -1, -2], [2, 1, 1], [4, -1, 2]], B=[[3], [5], [11]], X=[[x],...

    Text Solution

    |

  13. If [[x], [y], [z]]=(1)/(40)[[5, 10, -5], [-5, -2, 13], [10, -4, 6]][[5...

    Text Solution

    |

  14. The values of x, y, z for the equations x+y+z=1, 2x+3y+2z=2, ax+ay+2az...

    Text Solution

    |

  15. The values of x, y, z for the equations 5x-y+4z=5, 2x+3y+5z=2, 5x-2y+6...

    Text Solution

    |

  16. The values of x, y, z for the equations x-y+z=1, 2x-y=1, 3x+3y-4z=2 ar...

    Text Solution

    |

  17. The values of x, y, z for the equations x+y+z=6, 3x-y+2z=7, 5x+5y-4z=3...

    Text Solution

    |

  18. Solve the following equations by the method of reduction 2x-y+z=1, x...

    Text Solution

    |

  19. If the inverse of the matriix [(alpha,14,-1),(2,3,1),(6,2,3)] does not...

    Text Solution

    |

  20. if A=[[2,-3],[-4,1]] then (3A^2+12A)=?

    Text Solution

    |