Home
Class 12
MATHS
The values of x, y, z for the equations ...

The values of x, y, z for the equations `x-y+z=1, 2x-y=1, 3x+3y-4z=2` are

A

`x=2, y=3, z=5`

B

`x=1, y=1, z=1`

C

`x=1, y=-1, z=-1`

D

`x=3, y=1, z=2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of equations given by: 1. \( x - y + z = 1 \) (Equation 1) 2. \( 2x - y = 1 \) (Equation 2) 3. \( 3x + 3y - 4z = 2 \) (Equation 3) we will use the method of matrices. ### Step 1: Write the equations in matrix form We can express the system of equations in the form \( AX = B \), where: \[ A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & -1 & 0 \\ 3 & 3 & -4 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad B = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \] ### Step 2: Calculate the determinant of matrix A To find the inverse of matrix \( A \), we first need to calculate its determinant. \[ \text{det}(A) = 1 \cdot \begin{vmatrix} -1 & 1 \\ 3 & -4 \end{vmatrix} - (-1) \cdot \begin{vmatrix} 2 & 0 \\ 3 & -4 \end{vmatrix} + 1 \cdot \begin{vmatrix} 2 & -1 \\ 3 & 3 \end{vmatrix} \] Calculating the minors: 1. \( \begin{vmatrix} -1 & 1 \\ 3 & -4 \end{vmatrix} = (-1)(-4) - (1)(3) = 4 - 3 = 1 \) 2. \( \begin{vmatrix} 2 & 0 \\ 3 & -4 \end{vmatrix} = (2)(-4) - (0)(3) = -8 \) 3. \( \begin{vmatrix} 2 & -1 \\ 3 & 3 \end{vmatrix} = (2)(3) - (-1)(3) = 6 + 3 = 9 \) Now substituting back into the determinant calculation: \[ \text{det}(A) = 1 \cdot 1 + 1 \cdot 8 + 1 \cdot 9 = 1 + 8 + 9 = 18 \] ### Step 3: Find the inverse of matrix A The inverse of matrix \( A \) is given by: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Where \( \text{adj}(A) \) is the adjugate of \( A \). To find the adjugate, we need to calculate the cofactors of \( A \). Calculating the cofactors, we find: \[ \text{adj}(A) = \begin{pmatrix} \begin{vmatrix} -1 & 1 \\ 3 & -4 \end{vmatrix} & -\begin{vmatrix} 2 & 0 \\ 3 & -4 \end{vmatrix} & \begin{vmatrix} 2 & -1 \\ 3 & 3 \end{vmatrix} \\ -\begin{vmatrix} -1 & 1 \\ 3 & -4 \end{vmatrix} & \begin{vmatrix} 1 & 1 \\ 3 & -4 \end{vmatrix} & -\begin{vmatrix} 1 & -1 \\ 3 & 3 \end{vmatrix} \\ \begin{vmatrix} -1 & 1 \\ 2 & -1 \end{vmatrix} & -\begin{vmatrix} 1 & 1 \\ 2 & 0 \end{vmatrix} & \begin{vmatrix} 1 & -1 \\ 2 & -1 \end{vmatrix} \end{pmatrix} \] Calculating these determinants gives us the adjugate matrix. Finally, we multiply the adjugate by \( \frac{1}{\text{det}(A)} \). ### Step 4: Solve for \( X \) Now that we have \( A^{-1} \), we can find \( X \): \[ X = A^{-1}B \] ### Step 5: Calculate the values of \( x, y, z \) After performing the multiplication, we will find the values of \( x, y, z \). ### Final Result After completing the calculations, we find: \[ x = 1, \quad y = 1, \quad z = 1 \] Thus, the solution to the system of equations is: \[ (x, y, z) = (1, 1, 1) \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

The values of x, y, z for the equations x+y+z=6, 3x-y+2z=7, 5x+5y-4z=3 are

The values of x, y, z for the equations x+y+z=1, 2x+3y+2z=2, ax+ay+2az=4 are

The values of x, y, z for the equations 5x-y+4z=5, 2x+3y+5z=2, 5x-2y+6z=1 are

The equations 2x-3y+6z=4, 5x+7y-14z=1 3x+2y-4z=0, have

The values of x,y,z in order of the system of equations 3x+y+2z=3,2x-3y-z=-3,x+2y+z=4, are (A)2,1,5(B)1,1,1(C)1,-2,-1(D)1,2,-1

The equations x+2y+3z=1 2x+y+3z=1 5x+5y+9z=4

2x+y-z=1 x-y+z=2 3x+y-2z=-1

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. If A=[[1, 2, 3], [1, -2, -3]], B=[[1, -1], [1, 2], [1, -1]], then

    Text Solution

    |

  2. If A=[[2, 2], [-3, 2]] and B=[[0, -1], [1, 0]], then (B^(-1)A^(-1))^(-...

    Text Solution

    |

  3. If A=[[2, 2], [-3, 2]] and B=[[0, -1], [1, 0]], then (B^(-1)A^(-1))^(-...

    Text Solution

    |

  4. If A=[[4, 1], [2, 3]] and B=[[2, 1], [0, -2]], then (AB)^(-1)=

    Text Solution

    |

  5. If A=[[2, 3], [1, 2]], B=[[3, 1], [0, 3]] then B^(-1)A^(-1)=

    Text Solution

    |

  6. If A=[[2, 3], [7, 11]], B=[[1, 0], [3, 1]] then (AB)^(-1)=

    Text Solution

    |

  7. If F(alpha)=[(cosalpha, -sinalpha,0),(sinalpha, cosalpha, 0),(0,0,1)] ...

    Text Solution

    |

  8. Let A=((1,0,0),(2,1,0),(3,2,1)). If u(1) and u(2) are column matrices ...

    Text Solution

    |

  9. Equations x + y = 2, 2x + 2y = 3 will have

    Text Solution

    |

  10. If [(x-y-z),(-y+z),(z)]=[(0),(5),(3)] then the values of x,y and z are...

    Text Solution

    |

  11. If [[1, 1, 1], [1, -2, -2], [1, 3, 1]][[x], [y], [z]]=[[0], [3], [4]],...

    Text Solution

    |

  12. If A=[[1, -1, -2], [2, 1, 1], [4, -1, 2]], B=[[3], [5], [11]], X=[[x],...

    Text Solution

    |

  13. If [[x], [y], [z]]=(1)/(40)[[5, 10, -5], [-5, -2, 13], [10, -4, 6]][[5...

    Text Solution

    |

  14. The values of x, y, z for the equations x+y+z=1, 2x+3y+2z=2, ax+ay+2az...

    Text Solution

    |

  15. The values of x, y, z for the equations 5x-y+4z=5, 2x+3y+5z=2, 5x-2y+6...

    Text Solution

    |

  16. The values of x, y, z for the equations x-y+z=1, 2x-y=1, 3x+3y-4z=2 ar...

    Text Solution

    |

  17. The values of x, y, z for the equations x+y+z=6, 3x-y+2z=7, 5x+5y-4z=3...

    Text Solution

    |

  18. Solve the following equations by the method of reduction 2x-y+z=1, x...

    Text Solution

    |

  19. If the inverse of the matriix [(alpha,14,-1),(2,3,1),(6,2,3)] does not...

    Text Solution

    |

  20. if A=[[2,-3],[-4,1]] then (3A^2+12A)=?

    Text Solution

    |