Home
Class 12
MATHS
The p.d.f. of X is f(x)={{:((x^(2))/(18)...

The p.d.f. of X is `f(x)={{:((x^(2))/(18)","-3ltxlt3),(0", otherwise"):}`, then `P(X lt 1)` =

A

`(7)/(27)`

B

`(14)/(27)`

C

`(9)/(14)`

D

`(7)/(14)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( P(X < 1) \) for the given probability density function (p.d.f.) \( f(x) = \frac{x^2}{18} \) for \( -3 < x < 3 \) and \( f(x) = 0 \) otherwise, we can follow these steps: ### Step 1: Identify the limits of integration Since we need to find \( P(X < 1) \), we will integrate the p.d.f. from the lower limit of the function, which is \(-3\), to the upper limit of \(1\). ### Step 2: Set up the integral The probability \( P(X < 1) \) can be expressed as: \[ P(X < 1) = \int_{-3}^{1} f(x) \, dx \] Substituting the p.d.f. into the integral, we have: \[ P(X < 1) = \int_{-3}^{1} \frac{x^2}{18} \, dx \] ### Step 3: Factor out the constant Since \(\frac{1}{18}\) is a constant, we can factor it out of the integral: \[ P(X < 1) = \frac{1}{18} \int_{-3}^{1} x^2 \, dx \] ### Step 4: Compute the integral To compute the integral \(\int x^2 \, dx\), we use the power rule: \[ \int x^2 \, dx = \frac{x^3}{3} + C \] Now, we evaluate the definite integral from \(-3\) to \(1\): \[ \int_{-3}^{1} x^2 \, dx = \left[ \frac{x^3}{3} \right]_{-3}^{1} = \left( \frac{1^3}{3} \right) - \left( \frac{(-3)^3}{3} \right) \] Calculating this gives: \[ = \frac{1}{3} - \left( \frac{-27}{3} \right) = \frac{1}{3} + 9 = \frac{1}{3} + \frac{27}{3} = \frac{28}{3} \] ### Step 5: Substitute back into the probability expression Now we substitute back into the expression for \( P(X < 1) \): \[ P(X < 1) = \frac{1}{18} \cdot \frac{28}{3} = \frac{28}{54} = \frac{14}{27} \] ### Final Answer Thus, the probability \( P(X < 1) \) is: \[ \boxed{\frac{14}{27}} \]
Promotional Banner

Topper's Solved these Questions

  • PLANE

    NIKITA PUBLICATION|Exercise MULTIOLE CHOICE QUESTIONS|154 Videos
  • QUESTION PAPER MHT-CET 2016

    NIKITA PUBLICATION|Exercise MCQs|50 Videos

Similar Questions

Explore conceptually related problems

The p.d.f. of X is f(x)={{:((x^(2))/(18)","-3ltxlt3),(0", otherwise"):} , then P(|X|lt1) =

The p.d.f. of X is f(x)={{:((x+2)/(18)","-2ltxlt4),(0", otherwise"):} , then P(|X|lt1) =

The p.d.f. of X is f(x)={{:((x+2)/(18)","-2ltxlt4),(0", otheriwse"):} , then P(Xlt1) =

The p.d.f. of a r.v. X is f(x)={{:(kx^(2)(1-x)","0ltxlt1),(0", otherwise"):} , then k =

The p.d.f. of a continuous r.v. X is f(x)={{:((x^(2))/(3)","-1ltxlt2),(0", otherwise"):} , then P(X lt 1) =

If f(x)={{:((x)/(2)", for"-2ltxlt2).(0", otherwise"):} , then

The p.d.f. of a r.v. X is f(x)={{:(3(1-2x^(2))","0ltxlt1),(0", otherwise"):} , then F (x) =

The p.d.f. of a r.v. X is f(x)={{:(3(1-2x^(2))","0ltxlt1),(0", otherwise"):} , then P((1)/(4)ltxlt(1)/(3)) =

The p.d.f. of continuous r.v. X is f(x)={{:((x)/(8)","0ltxlt4),(0", otherwise"):} , then P(2ltXle3) =

The p.d.f. of a r.v. X is f(x)={{:(0.5x","0ltxlt2),(0", otherwise"):} , then P(X le1) =

NIKITA PUBLICATION-PROBABILITY DISTRIBUTION-MCQs
  1. The p.d.f. of a continuous r.v. X is f(x)={{:((x^(2))/(3)","-1lt x lt ...

    Text Solution

    |

  2. The p.d.f. of a continuous r.v. X is f(x)={{:((x^(2))/(3)","-1lt x lt...

    Text Solution

    |

  3. The p.d.f. of X is f(x)={{:((x^(2))/(18)","-3ltxlt3),(0", otherwise"):...

    Text Solution

    |

  4. The p.d.f. of X is f(x)={{:((x^(2))/(18)","-3ltxlt3),(0", otherwise")...

    Text Solution

    |

  5. The p.d.f. of a continuous r.v. X is f(x)={{:((1)/(10)","-5lexle5),(0"...

    Text Solution

    |

  6. Let X = time (in minutes) that elapses between the bell and the end of...

    Text Solution

    |

  7. Let X = time (in minutes ) that lapses between the bell and the e...

    Text Solution

    |

  8. Let the random variable X is defined as time (in minutes) that elapses...

    Text Solution

    |

  9. The p.d.f. of a r.v. X is f(x)={{:((1)/(x^(2))","1ltxltoo),(0", otherw...

    Text Solution

    |

  10. The p.d.f. of a r.v. X is f(x)={{:(kx","0ltxlt2),(0", otherwise"):}, t...

    Text Solution

    |

  11. The p.d.f. of a r.v. X is f(x)={{:(kx","0ltxlt2),(0", otherwise"):}, t...

    Text Solution

    |

  12. The p.d.f. of X is f(x)={{:((x+2)/(18)","-2ltxlt4),(0", otheriwse"):},...

    Text Solution

    |

  13. The p.d.f. of X is f(x)={{:((x+2)/(18)","-2ltxlt4),(0", otherwise"):},...

    Text Solution

    |

  14. The p.d.f. of a continuous r.v. X is f(x)={{:((x)/(8)", "0ltxlt4),(0"...

    Text Solution

    |

  15. The p.d.f. of a continuous r.v. X is f(x)={{:((x)/(8)","0ltxlt4),(0", ...

    Text Solution

    |

  16. The p.d.f. of a continuous r.v. X is f(x)={{:((x)/(8)","0ltxlt4),(0", ...

    Text Solution

    |

  17. The p.d.f. of a continuous r.v. X is f(x)={{:((x)/(8)","0ltxlt4),(0", ...

    Text Solution

    |

  18. The p.d.f. of a r.v. X is f(x)={{:(2x", "0lexle1),(0", otherwise"):},...

    Text Solution

    |

  19. The p.d.f. of a r.v. X is f(x)={{:(0.5x","0ltxlt2),(0", otherwise"):},...

    Text Solution

    |

  20. The p.d.f. of a r.v. X is f(x)={{:(0.5x", "0ltxlt2),(0", otherwise"):}...

    Text Solution

    |