A
B
C
D
Text Solution
Verified by Experts
The correct Answer is:
Topper's Solved these Questions
Similar Questions
Explore conceptually related problems
NIKITA PUBLICATION-PROBABILITY DISTRIBUTION-MCQs
- The p.d.f. of a r.v. X is f(x)={{:(0.5x","0ltxlt2),(0", otherwise"):},...
Text Solution
|
- The p.d.f. of a r.v. X is f(x)={{:(0.5x", "0ltxlt2),(0", otherwise"):}...
Text Solution
|
- The p.d.f. of a r.v. X is f(x)={{:(0.5x", "0ltxlt2),(0", otherwise"):}...
Text Solution
|
- The p.d.f. of a r.v. X is f(x)={{:(kx^(2)(1-x)","0ltxlt1),(0", otherwi...
Text Solution
|
- The p.d.f. of a r.v. X is f(x)={{:("ke"^(-thetax)","0lexltoo),(0", oth...
Text Solution
|
- The p.d.f. of a r.v. X is f(x)={{:("ke"^(-thetax)","0lexltoo),(0", oth...
Text Solution
|
- The p.d.f. of a r.v. X is f(x)={{:("ke"^(-thetax)","0lexltoo),(0", oth...
Text Solution
|
- The p.d.f. of a r.v. X is f(X)(x)={{:(kx(1-x)","0ltXlt1),(0", otherwis...
Text Solution
|
- The p.d.f. of a r.v. X is f(X)(x)={{:(kx(1-x)","0ltXlt1),(0", otherwis...
Text Solution
|
- The p.d.f. of a r.v. X is f(X)(x)={{:(kx(1-x)","0ltXlt1),(0", otherwis...
Text Solution
|
- The p.d.f. of a r.v. X is f(x)={{:(3(1-2x^(2))","0ltxlt1),(0", otherwi...
Text Solution
|
- The p.d.f. of a r.v. X is f(x)={{:(3(1-2x^(2))","0ltxlt1),(0", otherwi...
Text Solution
|
- The p.d.f. of a r.v. X is f(X)(x)={{:((k)/(sqrt(x))","0ltxlt4),(0", ot...
Text Solution
|
- The p.d.f. of a r.v. X is f(X)(x)={{:((k)/(sqrt(x))","0ltxlt4),(0", ot...
Text Solution
|
- The p.d.f. of a r.v. X is f(X)(x)={{:((k)/(sqrt(x))","0ltxlt4),(0", ot...
Text Solution
|
- The p.d.f. of a r.v. X is f(X)(x)={{:((k)/(sqrt(x))","0ltxlt4),(0", ot...
Text Solution
|
- The p.d.f. of a r.v. X is f(X)(x)={{:((k)/(sqrt(x))","0ltxlt4),(0", ot...
Text Solution
|
- The p.d.f. of a continuous r.v. X is f(x)={{:((1)/(2a)","0ltxlt2a",...
Text Solution
|
- The p.d.f. of a continuous r.v. X is f(x)={{:((1)/(2a)","0ltxlt2a","...
Text Solution
|
- The p.d.f. of a continuous r.v. X is f(x)={{:((1)/(2a)","0ltxlt2a","...
Text Solution
|