Home
Class 11
PHYSICS
Two statements are made regarding three ...

Two statements are made regarding three non-zero vectors `vecA, vecB and vec C` having different magnitudes :
(1) Any two of these vectors can be combined to give a zero vector.
(2) The three vectors can be combined to give a zero vector. Then,

A

Statements (1) and (2) are always true

B

Statements (1) and (2) are always wrong

C

Statement (1) is always wrong but 2 may be true

D

Statements (1) and (2) may be true

Text Solution

Verified by Experts

The correct Answer is:
C

As the vectors `vec A, vec B and vec C` have different magnitudes, any two vectors, when combined in any way, cannot give a zero resultant. Hence statement (1) is wrong. But three vectors can be combined to give a zero resultant. This is possible when `vec A + vec B =-vec C` and then `-vec C + vec C=0`.
Thus statement (2) may be correct.
Thus (c ) is the correct statement.
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (STANDARD LEVEL)|84 Videos
  • VECTORS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|10 Videos
  • REFRACTION OF LIGHT

    MARVEL PUBLICATION|Exercise Test Your Grasp|10 Videos

Similar Questions

Explore conceptually related problems

Give an example of a zero vector

Can three vectors not in one phane giv e a zero resultant ? Can four vectors do ?

For three vectors vecA, vecB and vecC and |vecA|+|vecB|=|vecC| . What can we say about direction of these vectors?

Can two vectors of different magitudes be combind to give zero resultant ?

If non-zero vectors veca and vecb are equally inclined to coplanar vector vecc , then vecc can be

How many minimum numbers of non zero vectors in different planes can be added to give zero resultant.

What do you mean by zero vector ? Write any three properties of zero vector .

If component of one vector in the direction of another vector is zero, then those two vectors

What is a zero vector ? How can you obtain zero vectors. Give examples and properties of zero vectors.