Home
Class 11
PHYSICS
If vec P and vec Q are two vectors, then...

If `vec P and vec Q` are two vectors, then the value of `(vec P + vec Q) xx (vec P - vec Q)` is

A

`vec P xx vec Q`

B

`-(vec P xx vec Q)`

C

`2(vec Q xx vec P)`

D

`+2(vec P xx vec Q)`

Text Solution

Verified by Experts

The correct Answer is:
C

`(vec P + vec Q) xx (vec P - vec Q)`
`=vec P xx vec P -vec P xx vec Q + vec Q xx vec P -vec Q xx vec Q`
But `vec P xx vec P = vec Q xx vec Q =0 and vec P xx vec Q =- vec Q xx vec P`
`therefore (vec P + vec Q) xx (vec P - vec Q)`
`=0+vec Q xx vec P + vec Q xx vec P-0`
`=2 (vec Q xx vec P)`
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (STANDARD LEVEL)|84 Videos
  • REFRACTION OF LIGHT

    MARVEL PUBLICATION|Exercise Test Your Grasp|10 Videos

Similar Questions

Explore conceptually related problems

Two vectors vec P and vec Q

What is the angle between vec P and the resultant of (vec P+vec Q) and (vec P-vec Q)

If vec a, vec b, vec c are three non-coplanar vectors and vec p, vec q, vec r are vectors defined by the relations vec p = (vec b xxvec c) / ([vec avec bvec c]), vec q = (vec c xxvec a) / ([vec avec bvec c]), vec r = (vec a xxvec b) / ([vec avec bvec c]) then the value of expression (vec a + vec b) * vec p + (vec b + vec c) * vec q + (vec c + vec a) * vec r is equal to

If vec P xx vec Q= vec R, vec Q xx vec R= vec P and vec R xx vec P = vec Q then

What is the anlge between vec P xx vec Q and vec Q xx vec P is

If vec p and vec q are two unit vectors and the angle between them is 60^(@) then ((1+vec p. vec q))/((1-vec p.vec q)) is ?

What can be the angle between (vec(P) + vec(Q)) and (vec(P) - vec(Q)) ?

Let veca , vecb, vec c be three non coplanar vectors , and let vecp , vecq " and " vec r be the vectors defined by the relation vecp = (vecb xx vec c )/([veca vecb vec c ]), vec q = (vec c xx vec a)/([veca vecb vec c ]) " and " vec r = (vec a xx vec b)/([veca vecb vec c ]) Then the value of the expension (vec a + vec b) .vec p + (vecb + vec c) .q + (vec c + vec a) . vec r is equal to

If vec P = (a+1) hati + a hatj + a hatk vec Q = a hati + (a+1) hatj + ahatk vec R = a hati + a hatj + (a+1) hatk vec P, vec Q, vec R are coplanar vectors and 3(vec P . vec Q)^2 - lambda | vec R xx vec Q|^2 = 0 then value of lambda is

If vec p + vec q + vec r = xvec s and vec q + vec r + vec s = yvec p and are vec p, vec q, vec r non coplaner vectors then | vec p + vec q + vec r + vec r + vec s | =