Home
Class 12
MATHS
The value of lim(x->1) [sin^-1 x] is : ...

The value of `lim_(x->1) [sin^-1 x]` is : (Where [.) denotes greatest integer function).

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr0)[(sin x)/(x)] is (where [.] denotes greatest integer function)

The value of lim_(x->0) [x^2/(sin x tan x)] (Wherer [*] denotes greatest integer function) is

Solve lim_(xrarr1)[sin^(-1)x] (where [.] denotes greatest integer function.)

Solve lim_(xtooo) [tan^(-1)x] (where [.] denotes greatest integer function)

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

lim_(x->0) (e^[[|sinx|]])/([x+1]) is , where [.] denotes the greatest integer function.

lim_(x -> 0)[sin[x-3]/([x-3])] where [.] denotes greatest integer function is

lim_(x rarr-1)([x]+|x|). (where [.] denotes the greatest integer function)