Home
Class 12
MATHS
" Prove that "cos^(-1)x+cos^(-1)((x)/(2)...

" Prove that "cos^(-1)x+cos^(-1)((x)/(2)+(1)/(2)sqrt(3-3x^(2)))=(pi)/(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos^(-1)(x)+ cos^(-1){(x)/(2)+sqrt(3-3x^(2))/(2)}=(pi)/(3) .

Find the set of value of x for which the equation cos^(-1) x + cos^(-1) ((x)/(2) + (1)/(2) sqrt(3 -3x^(2))) = (pi)/(3) holds goods

Find the set of value of x for which the equation cos^(-1) x + cos^(-1) ((x)/(2) + (1)/(2) sqrt(3 -3x^(2))) = (pi)/(3) holds goods

Prove that : cos^(-1) x + cos^(-1) ((x)/(2) + (sqrt( 3-3x^2) )/( 2) ) = (pi)/ (3)

Prove that : cos^(-1) x + cos^(-1) ((x)/(2) + (sqrt( 3-3x^2) )/( 2) ) = (pi)/ (3)

Prove that cos^(-1)x+cos^(-1) [x/2 +(sqrt(3-3x^(2)))/2 ] = pi/3 , 1/2 le x le 1

If f(x)=cos^(-1)x+cos^(-1){(x)/(2)+(1)/(2)sqrt(3-3x^(2))} then

Find the value of cos^(-1)x+cos^(-1)((x)/(2)+(sqrt(3-3x^(2)))/(2))

Find the value of cos^(-1)(x)+cos^(-1)((x)/(2)+(sqrt(3-3x^(2)))/(2))

Find the value of cos^(-1)(x)+cos^(-1)((x)/(2)+(sqrt(3-3x^(2)))/(2))