Home
Class 10
MATHS
" To cost "f(0)^(2)A=1," Prove tat "sin^...

" To cost "f(0)^(2)A=1," Prove tat "sin^(2)A+sin^(4)A=1

Promotional Banner

Similar Questions

Explore conceptually related problems

If cosA+cos^(2)A=1 , then prove that sin^(2)A+sin^(4)A=1 .

If cosA+cos^(2)A=1 , then prove that sin^(2)A+sin^(4)A=1 .

If (cos^(4)A)/(cos^(2)B)+(sin^(4)A)/(sin^(2)B)=1, Prove that: sin^(4)A+sin^(4)B=2sin^(2)A sin^(2)B

If sin^(4)A+sin^(2)A=1, prove that: tan^(4)A-tan^(2)A=1

If (cos^4 A)/(cos^2 B) + (sin^4 A)/(sin^2 B) =1 , Prove that: sin^4 A+sin^4 B=2 sin^2 A sin^2 B

If (cos^(4)A)/(cos^(2)B)+(sin^(4)A)/(sin^(2)B)=1 then prove that (i)sin^(2)A+sin^(2)B=2sin^(2)A sin^(2)B(ii)(cos^(4)B)/(cos^(2)A)+(sin^(4)B)/(sin^(2)A)=1

Prove that : (1 + tan^(2) A) + (1 + (1)/ (tan^(2) A)) = (1)/ (sin^(2) A - sin^(4) A)

If sin A + sin^(2)A + sin^(3)A =1 , then , prove that cos^(6) A - 4 cos^(4) A + 8 cos^(2) A =4 .

Prove: sec^4A(1-sin^4A)-2tan^2A=1

Prove: sec^4A(1-sin^4A)-2tan^2A=1