Home
Class 11
MATHS
" Show that "tan^(-1)((cos x)/(1+sin x))...

" Show that "tan^(-1)((cos x)/(1+sin x))=(pi)/(4)-(x)/(2),-(pi)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan^(-1)((cos x)/(1+sin x))=(pi)/(4)-(x)/(2),|x in(-(pi)/(2),(pi)/(2))

Prove that tan^(-1)((cosx)/(1+sin x)) =(pi)/(4)-(x)/(2), x in (-(pi)/(2), (pi)/(2)) .

solve: tan^(-1) ((cos x)/(1-sin x)) = ((pi)/(4)+(x)/(2)) , (-3 pi)/(2)ltxlt(pi)/(2)

Solve : tan^(-1)((cos x)/(1+sin x)) , -(pi)/(2) lt x lt (pi)/(2)

Show that tan^-1((cosx)/(1 + sin x)) = pi/4 - x/2 , where x in (-pi/2 , pi/2)

Express 'tan ^(^^)(-1)((cos x)/(1-sin x)),-pi/2

tan ^ (- 1) ((cos x-sin x) / (cos x + sin x)) = (pi) / (4) -x

prove that tan^(-1)((cos x)/(1-sin x))-cot^(-1)((sqrt(1+cos x))/(sqrt(1-cos x)))=(pi)/(4),x varepsilon(0,(pi)/(2))

Show that sin^-1 x+cos^-1 x=pi/2 .

If 0