Home
Class 12
MATHS
y=(sqrt(cos x-1/2))/(sqrt(6+3sin-6x^(2))...

y=(sqrt(cos x-1/2))/(sqrt(6+3sin-6x^(2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

Let 2y={(cot^(-1)(sqrt(3)cos x-sin x))/(cos x+sqrt(3)sin x))^(2) then (dy)/(dx) is equal to (A) x-(pi)/(6)(B)x+(pi)/(6)(C)2x-(pi)/(6)(D)2x-(pi)/(3)])

If sin^(-1)x_i in [0,1]AAi=1,2,3, .28 then find the maximum value of sqrt(sin^(-1)x_1)sqrt(cos^(-1)x_2)+sqrt(sin^(-1)x_2)sqrt(cos^(-1)x_3)+ sqrt(sin^(-1)x_3)sqrt(cos^(-1)x_4)++sqrt(sin^(-1)x_(28))sqrt(cos^(-1)x_1)

If sin^(-1)x_i in [0,1]AAi=1,2,3, .28 then find the maximum value of sqrt(sin^(-1)x_1)sqrt(cos^(-1)x_2)+sqrt(sin^(-1)x_2)sqrt(cos^(-1)x_3)+ sqrt(sin^(-1)x_3)sqrt(cos^(-1)x_4)++sqrt(sin^(-1)x_(28))sqrt(cos^(-1)x_1)

If sin^(-1)x_i in [0,1]AAi=1,2,3, .28 then find the maximum value of sqrt(sin^(-1)x_1)sqrt(cos^(-1)x_2)+sqrt(sin^(-1)x_2)sqrt(cos^(-1)x_3)+ sqrt(sin^(-1)x_3)sqrt(cos^(-1)x_4)++sqrt(sin^(-1)x_(28))sqrt(cos^(-1)x_1)

If sin^(-1)x_i in [0,1]AAi=1,2,3, .28 then find the maximum value of sqrt(sin^(-1)x_1)sqrt(cos^(-1)x_2)+sqrt(sin^(-1)x_2)sqrt(cos^(-1)x_3)+ sqrt(sin^(-1)x_3)sqrt(cos^(-1)x_4)++sqrt(sin^(-1)x_(28))sqrt(cos^(-1)x_1)

If sqrt(1 - x^6) + sqrt(1 - y^6) = a^3 (x^3 - y^3) prove that (dy)/(dx) = (x^2 sqrt(1 - y^6))/(y^2 sqrt(1 - x^6))

The domain of the function f(x)=sqrt(sin x+cos x)+sqrt(7x-x^(2)-6) is

If sin^(-1)x_i in [0,1]AAi=1,2,3, .28 then find the maximum value of sqrt(sin^(-1)x_1)sqrt(cos^(-1)x_2)+sqrt(sin^(-1)x_2)sqrt(cos^(-1)x_3)+ sqrt(sin^(-1)x_3)sqrt(cos^(-1)x_4)+....+sqrt(sin^(-1)x_(28))sqrt(cos^(-1)x_1)

y=sin^(-1)((x)/(sqrt(1+x^(2))))+cos^(-1)((1)/(sqrt(1+x^(2))))

The value of lim_(xrarrpi//2)12 tan^(2)x[sqrt(6+3 sin x-2cos^(2)x)-sqrt(3+6 sin x-cos^(2)x)] is _____________