Home
Class 12
MATHS
[" Q.4",5^(log x)-3^(log x-1)=3^(log x+1...

[" Q.4",5^(log x)-3^(log x-1)=3^(log x+1)-5^(log x-1)," where the base of logarithm is "10.],[" Q."5,(1+log_(2)(x-4))/(log_(sqrt(6))(sqrt(x+3)-sqrt(x-3)))=1]

Promotional Banner

Similar Questions

Explore conceptually related problems

(1+log_(2)(x-4))/(log_(sqrt(2))(sqrt(x+3)-sqrt(x-3)))=1

3^(log x)-2^(log x)=2^(log x+1)-3^(log x-1), where base is 10,

Solve : (log_(2)(x-4)+1)/(log_(sqrt2)(sqrt(x+3)-sqrt(x-3))) = 1 .

The value of X satisfying 5^(log x)-3^(log x-1)=3^(log x+1)-5^(log x-1) , (where the base of logarithm is 3 ),is

2log_(2)(log_(2)x)+log_((1)/(5))(log_(2)2sqrt(2x))=1

Solve log_(5)sqrt(7x-4)-1/2=log_5sqrt(x+2)

Solve log_(x)3+log_(3)x=log_(sqrt(3))x+log_(3)sqrt(x)+(1)/(2)

The number of value(s) of x satisfying 1-log_(3)(x+1)^(2)=1/2log_(sqrt(3))((x+5)/(x+3)) is

int ((log(1+6sqrt(x)))/(3sqrt(x)+sqrt(x))+(1)/(3sqrt(x)+4sqrt(x)))dx