Home
Class 10
MATHS
Find x in terms of a, b and c a/(x-a)+b...

Find `x` in terms of `a`, `b` and `c` `a/(x-a)+b/(x-b)+c/(x-c)=2c/(x-c)`, `x !=a, x!=b,x!=c`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find x in terms of a,b and c(a)/(x-a)+(b)/(x-b)+(c)/(x-c)=2(c)/(x-c)x!=a,x!=b,x!=c

Find x in terms of a , b and c : (a)/(x - a) + (b)/(x - b) = (2 c)/(x - c) , x - a , b , c

((x-a)(x-b))/((x-c)(x-d))=A/(x-c)-B/(x-d)+C rArr C=

(a^2/(x-a)+b^2/(x-b)+c^2/(x-c)+a+b+c)/(a/(x-a)+b/(x-b)+c/(x-c))

(_x^( If )-b-c)/(a)+(x-c-a)/(b)+(x-a-c)/(c)=3

If the roots of (x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0 are equal then show that a=b=c

Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-c],[ x+b, x+c,0]|=0,a!=b!=c and b(a+c)> a c

Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-c],[ x+b, x+c,0]|=0,a!=b!=c and b(a+c)> a c