Home
Class 12
MATHS
[" IMPLE "10quad " If "a>b>c>0," prove t...

[" IMPLE "10quad " If "a>b>c>0," prove that "],[qquad cot^(-1)((ab+1)/(a-b))+cot^(-1)((bc+1)/(b-c))+cot^(-1)((ca+1)/(c-a))=pi]

Promotional Banner

Similar Questions

Explore conceptually related problems

If a > b > c >0 , prove that cot^(-1)((a b+1)/(a-b))+cot^(-1)((b c+1)/(b-c))+cot^(-1)((c a+1)/(c-a))=pi

If a > b > c >0 , prove that cot^(-1)((a b+1)/(a-b))+cot^(-1)((b c+1)/(b-c))+cot^(-1)((c a+1)/(c-a))=pi

Prove that: cot^(-1)((ab+1)/(a-b))+cot^(-1)((bc+1)/(b-c))+cot^(-1)((ca+1)/(c-a))=0

Prove that: cot^(-1)((ab+1)/(a-b))+cot^(-1)((bc+1)/(b-c))+cot^(-1)((ca+1)/(c-a))=0 .

If a

Prove that : cot^(-1)((1+ab)/(a-b))+cot^(-1)((1+bc)/(b-c))+cot^(-1)((1+ca)/(c-a))=pi,(a>b>c>0)

Prove that : cot^(-1)((1+ab)/(a-b))+cot^(-1)((1+bc)/(b-c))+cot^(-1)((1+ca)/(c-a))=pi,(a>b>c>0)

If a gt b gt c gt0 , then prove that cot^(-1) ((ab+1)/( a-b)) + cot^(-1) ((bc + 1)/( b-c)) + cot^(-1) ((ca + 1)/( c.-a)) = 0

Answer any three questions (e) If a gt b gt c gt0 , then prove that cot^(-1) ((ab+1)/( a-b)) + cot^(-1) ((bc + 1)/( b-c)) + cot^(-1) ((ca + 1)/( c'-a)) = pi

Prove the followings : "cot"^(-1)(ab+1)/(a-b)+"cot"^(-1)(bc+1)/(b-c)+"cos"^(-1)(ca+1)/(c-a)=pi(agtbgtc)