Home
Class 8
MATHS
int(0)^(oo)[(3)/(x^(2)+1)]dx" is equal t...

int_(0)^(oo)[(3)/(x^(2)+1)]dx" is equal to ([.] denotes G.I.F) "

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(oo)[(3)/(x^(2)+1)]dx where [.] denotes the greatest integer function.

Evaluate int_(0)^(oo)[(3)/(x^(2)+1)]dx where [.] denotes the greatest integer function.

int_(0)^(oo)[(3)/(x^(2)+1)]dx, where [.] denotes the greatest integer function,is equal to (A)sqrt(2) (B) sqrt(2)+1(C)(3)/(sqrt(2))(D) infinite

int_0^oo 1/(1+x^2)dx is equal to :

The value of int_(0)^(oo)(dx)/(1+x^(4)) is equal to

The value of int_(0)^(oo)(dx)/(1+x^(4)) is equal to

If f(x)=[|x|, then int_(0)^(100)f(x)dx is equal to (where I.] denotes the greatest integer function)

I_(1)=int_(0)^(4)[x+(3)/(2)]dx and I_(2)=int_(0)^( pi)sqrt((1+cos2x)/(2))dx then ([.] denotes the G.IF )

The value fo the integral I=int_(0)^(oo)(dx)/((1+x^(2020))(1+x^(2))) is equal to kpi , then the value of 16k is equal to