Home
Class 11
MATHS
" (12) Prove that: "((2n+1)!)/(n!)=2^(n)...

" (12) Prove that: "((2n+1)!)/(n!)=2^(n){1*3*5...(2n-1)(2n+1)}

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: :((2n)!)/(n!)={1.3.5...(2n-1)}2^(n)

Prove that ((2n)!)/(n!) =2^(n) (1,3,5,……..(2n-1)) .

Prove that .^(2n)C_(n)=(2^(n)xx[1*3*5...(2n-1)])/(n !) .

Prove that: ((2n)!)/(n !)={1. 3. 5..... (2n-1)}2^ndot

Prove that: ((2n)!)/(n !)={1. 3. 5 (2n-1)}2^ndot

Prove that: ((2n)!)/(n !)={1. 3. 5 (2n-1)}2^ndot

Prove that: ((2n)!)/(n !)={1. 3. 5 (2n-1)}2^ndot

Prove that , .^(2n)C_(n)=2^(n)(1.3.5...(2n-1))/(lfloorn)

Prove that (2n!)/(n!)={1.3.5.....(2n-1)}2^n