Home
Class 11
MATHS
The value of tan^-1(1/3)+tan^-1(2/9)+tan...

The value of `tan^-1(1/3)+tan^-1(2/9)+tan^-1(4/33)+tan^-1(8/129)+....n` terms is:

Text Solution

Verified by Experts

`T_r=tan^(-1)((2^(r-1))/(2^(2r-1)+1))`
`r_1=1/3`
`r_2=2/9`
`r_3=4/33`
`2^(r-1)=2*2^(r-1)-2^(r-1)=2^r-2^(r-1)`
`T_r=tan^(-1)((2^r*2^(r-1))/(1+2^r*2^(r-1)))`
`T_1=tan^(-1)(2)-tan(1)`
`T_2=tan^(-1)(4)-tan^(-1)(2)`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of tan^-1 1+tan^-1 2+ tan^-1 3 is

The value of tan^(-1)1+tan^(-1)2+tan^(-1)3 is

The value of tan^(-1)1+tan^(-1)2+tan^(-1)3 is

Show that 2 tan^-1(1/4) + 2 tan^-1 (2/9) = tan^-1(4/3) .

Find value of tan^-1 (3/4)+tan^-1 (3/5)-tan^-1 (8/19)

tan^(- 1)(1/4)+tan^(- 1)(2/9)=1/2tan^(- 1)(4/3)