Home
Class 11
CHEMISTRY
{:(,"Column-I",,"Column-II",),(,,,("mass...

`{:(,"Column-I",,"Column-II",),(,,,("mass of product"),),((A),2H_(2)+O_(2)rarr2H_(2)O,(p),1.028 g,),(,lg" "lg,,,),((B),3H_(2) +N_(2) rarr2NH_(3),(q),1.333 g,),(,lg " " lg,,,),((C),H_(2) + CI_(2) rarr 2HCI ,(r),1.125 g,),(,lg " "lg ,,,),((D),2H_(2) + C rarrCH_(4),(s),1.214 g,),(,lg " "lg,,,):}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of matching the reactions in Column I with the corresponding mass of products in Column II, we will analyze each reaction step by step. ### Step-by-Step Solution: **Step 1: Analyze Reaction A** - **Reaction:** \(2H_2 + O_2 \rightarrow 2H_2O\) - **Given:** 1 g of \(H_2\) and 1 g of \(O_2\) - **Molar Masses:** - \(H_2 = 2 \, \text{g/mol}\) - \(O_2 = 32 \, \text{g/mol}\) - **Moles Calculation:** - Moles of \(H_2 = \frac{1 \, \text{g}}{2 \, \text{g/mol}} = 0.5 \, \text{mol}\) - Moles of \(O_2 = \frac{1 \, \text{g}}{32 \, \text{g/mol}} \approx 0.03125 \, \text{mol}\) - **Limiting Reagent:** \(O_2\) (since it is less in moles) - **Mass of \(H_2O\) produced:** - Moles of \(H_2O = 2 \times \text{moles of } O_2 = 2 \times 0.03125 = 0.0625 \, \text{mol}\) - Mass of \(H_2O = 0.0625 \, \text{mol} \times 18 \, \text{g/mol} = 1.125 \, \text{g}\) **Step 2: Analyze Reaction B** - **Reaction:** \(3H_2 + N_2 \rightarrow 2NH_3\) - **Given:** 1 g of \(H_2\) and 1 g of \(N_2\) - **Molar Masses:** - \(N_2 = 28 \, \text{g/mol}\) - **Moles Calculation:** - Moles of \(H_2 = 0.5 \, \text{mol}\) (as calculated before) - Moles of \(N_2 = \frac{1 \, \text{g}}{28 \, \text{g/mol}} \approx 0.0357 \, \text{mol}\) - **Limiting Reagent:** \(N_2\) - **Mass of \(NH_3\) produced:** - Moles of \(NH_3 = 2 \times \text{moles of } N_2 = 2 \times 0.0357 \approx 0.0714 \, \text{mol}\) - Mass of \(NH_3 = 0.0714 \, \text{mol} \times 17 \, \text{g/mol} \approx 1.214 \, \text{g}\) **Step 3: Analyze Reaction C** - **Reaction:** \(H_2 + Cl_2 \rightarrow 2HCl\) - **Given:** 1 g of \(H_2\) and 1 g of \(Cl_2\) - **Molar Masses:** - \(Cl_2 = 71 \, \text{g/mol}\) - **Moles Calculation:** - Moles of \(H_2 = 0.5 \, \text{mol}\) - Moles of \(Cl_2 = \frac{1 \, \text{g}}{71 \, \text{g/mol}} \approx 0.0141 \, \text{mol}\) - **Limiting Reagent:** \(Cl_2\) - **Mass of \(HCl\) produced:** - Moles of \(HCl = 2 \times \text{moles of } Cl_2 = 2 \times 0.0141 \approx 0.0282 \, \text{mol}\) - Mass of \(HCl = 0.0282 \, \text{mol} \times 36.5 \, \text{g/mol} \approx 1.028 \, \text{g}\) **Step 4: Analyze Reaction D** - **Reaction:** \(2H_2 + C \rightarrow CH_4\) - **Given:** 1 g of \(H_2\) and 1 g of \(C\) - **Molar Masses:** - \(C = 12 \, \text{g/mol}\) - **Moles Calculation:** - Moles of \(H_2 = 0.5 \, \text{mol}\) - Moles of \(C = \frac{1 \, \text{g}}{12 \, \text{g/mol}} \approx 0.0833 \, \text{mol}\) - **Limiting Reagent:** \(H_2\) - **Mass of \(CH_4\) produced:** - Moles of \(CH_4 = \text{moles of } H_2 = 0.5 \, \text{mol}\) - Mass of \(CH_4 = 0.5 \, \text{mol} \times 16 \, \text{g/mol} = 1.33 \, \text{g}\) ### Final Matching: - A matches with R (1.125 g) - B matches with S (1.214 g) - C matches with P (1.028 g) - D matches with Q (1.33 g)
Promotional Banner

Topper's Solved these Questions

  • MOLE CONCEPT

    ALLEN|Exercise Comprehension # 1|3 Videos
  • MOLE CONCEPT

    ALLEN|Exercise Comprehension # 2|3 Videos
  • MOLE CONCEPT

    ALLEN|Exercise EXERCISE - 02|46 Videos
  • IUPAC NOMENCLATURE

    ALLEN|Exercise Exercise - 05(B)|8 Videos
  • QUANTUM NUMBER & PERIODIC TABLE

    ALLEN|Exercise J-ADVANCED EXERCISE|26 Videos

Similar Questions

Explore conceptually related problems

H_(2)(g)+(1)/(2)O_(2)(g)rarr2H_(2)O(l), DeltaH =- 286 kJ 2H_(2)(g)+O_(2)(g)rarr2H_(2)O(l)……………kJ(+-?)

Match the following {:(,"Column -I",,"Column -II"),((A),underset(3g)(2H_(2))+underset(22.66g)(O_(2))rarr 2H_(2)O,(p),25.5 "g product"),((B),underset(21 g)(N_(2))+underset(5 g)(3H_(2))rarr 2 NH_(3),(q),H_(2) "is present in excess"),((C ),underset(1g)(H_(2))+underset(40 g)(Cl_(2))rarr 2 HCl,(r ),H_(2) "is the limiting reagent"),((D),underset(20g)(C )+underset(6.375g)(2H_(2))rarr CH_(4),(s),36.5"g product"):}

NH_(3)(g) + 3Cl_(2)(g) rarr NCl_(3)(g) + 3HCl(g), " "DeltaH_(1) N_(2)(g) + 3H_(2)(g) rarr 2NH_(3)(g), " "Delta H_(2) H_(2)(g) + Cl_(2)(g) rarr 2HCl(g), " "Delta H_(3) The heat of formation of NCl3(g) in the terms of DeltaH_(1), DeltaH_2 and DeltaH_(3) is :

The standard enthyalpy of N_(2(g))+3H_(2(g)rarr2NH_(3(g)) is

{:(,"Column-I(Reactions)",,,"Column-II(Product)"),((A),"Borax",overset(Delta)rarr,(p),"BN"),((B),B_(2)H_(6)+H_(2)O,overset(Delta)rarr,(q),B_(2)H_(6)),((C),B_(2)H_(6)NH_(3)("Excess"),overset(Delta)rarr,(r),H_(3)BO_(3)),((D),BCl_(3)+LiAlH_(4),overset(Delta)rarr,(s),NaBO_(2)+B_(2)O_(3)):}

i. H_(2)(g) +CI_(2)(g)rarr 2HCI(g),DeltaH =- x kJ ii. NaCI +H_(2)SO_(4) rarr NaHSO_(4) +HCI, DeltaH =- y kJ iii. 2H_(2)O +2CI_(2) rarr 4HCI +O_(2),DeltaH =- z kJ From the above equations, the value of DeltaH of HCI is

Calculate in kJ for the following reaction : C(g) + O_(2)(g) rarr CO_(2)(g) Given that, H_(2)O(g) + C(g) + H_(2)(g) , Delta H = +131 kJ CO(g) + 1/2 O_(2)(g) rarr CO_(2)(g), " " Delta H = -242 kJ H_(2)(g) + 1/2 O_(2)(g) rarr H_(2)O(g), " "DeltaH = -242 kJ

Diborane is a potential rocket fuel which undergoes combustion according to the reaction, B_(2)H_(6) (g) + 3O_(2) (g) rarr B_(2) O_(3) (s) + 3H_(2) O (g) From the following data, calculate the enthalpy change for the combustion of diborane: (i) 2 B (s) + ((3)/(2)) O_(2) (g) rarr B_(2) O_(3) (s) , Delta H = 0 1273 k J//mol (ii) H_(2) (g) + ((1)/(2)) O_(2) (g) rarr H_(2) O (l), Delta H = -286 kJ//mol (iii) H_(2) O (l) rarr H_(2)O (g) Delta H = 44 kJ//mol (iv) 2B (s) + 3H_(2) (G) rarr B_(2) H_(6) (g), Delta H = 36 kJ//mol