Home
Class 12
MATHS
If x = 2 cos^4(t+3), y = 3 sin^4(t+3), s...

If `x = 2 cos^4(t+3), y = 3 sin^4(t+3)`, show that `(dy)/(dx)` = - `sqrt((3y)/(2x))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the following: If x = 2 cos^(4) (t+3), y= 3 sin^(4) (t+3), then show that dy/dx = - sqrt (frac{3y}{2x})

If x= 2 cos^(4) (t+3) ,y=3sin ^(4) (t+3) ,then (dy)/(dx)=

If x = a cos^(4)t , y = b sin^(4)t then (dy)/(dx) at t = (3pi)/4 is

Solve the following: If x = a cos^(3) t, y= a sin^(3) t, then show that dy/dx = - (frac{y}{x})^(1/3)

"If "x=3cost-2cos^(3)t,y=3sint-2sin^(3)t," show that"(dy)/(dx)=cott.

If x = sqrt(a^(sin^(-1)t)), y= sqrt(a^(cos^(-1)t)) , show that (dy)/(dx)= -(y)/(x)

If x =3 cos t-2cos ^(3) t,y =3 sin t- 2 sin ^(3) t,then (dy)/(dx) =

If x = 3 cos t - 2 cos^3 t and y = 3 sin t - 2 sin^3 t , show that dy/dx = cott

If x=sqrt(a^(sin^(-1)t)), y= sqrt(a^(cos^(-1)t)) , show that (dy)/(dx)= -(y)/(x) .