Home
Class 12
PHYSICS
In interference pattern if the slit widt...

In interference pattern if the slit widths are in the ratio `1:9` then find out the ratio of minimum and maximum intensity
Slit width ratio `(w_(1))/(w_(2))=(1)/(9)`
`because(I_(1))/(I_(2))=(w_(1))/(w_(2))=(a_(1)^(2))/(a_(2)^(2))=(1)/(9)implies(a_(1))/(a_(2))=(1)/(3)implies3a_(1)=a_(2)`
`therefore(I_(min))/(I_(max))=((a_(1)-a_(2))^(2))/((a_(1)+a_(2))^(2))=((a_(1)-3a_(1))^(2))/((a_(1)+3a_(1))^(2))=(4)/(16)=1:4`

Promotional Banner

Topper's Solved these Questions

  • WAVE OPTICS

    ALLEN|Exercise Example 1|1 Videos
  • WAVE OPTICS

    ALLEN|Exercise Example 2|1 Videos
  • UNIT & DIMENSIONS, BASIC MATHS AND VECTOR

    ALLEN|Exercise Exercise (J-A)|7 Videos

Similar Questions

Explore conceptually related problems

(a_(1))/(a_(1)+a_(2))+(a_(3))/(a_(3)+a_(4))=(2a_(2))/(a_(2)+a_(3))

It a_(1) , a_(2) , a_(3) a_(4) be in G.P. then prove that (a_(2)-a_(3))^(2) + (a_(3) - a_(1))^(2) + (a_(4) +a_(2))^(2) = (a_(1)-a_(4))^(2)

prove that (1)/((a-a_(1))^(2)),(1)/(a-a_(1)),(1)/(a_(1))(1)/((a-a_(2))^(2)),(1)/(a-a_(2)),(1)/(a_(2))(1)/((a-a_(3))^(2)),(1)/(a-a_(3)),(1)/(a_(3))]|=(-a^(2)(a_(1)-a_(2))(a_(2)-a_(3))(a_(3)-a_(1)))/(a_(1)a_(2)a_(3)(a-a_(1))^(2)(a-a_(2))^(2)(a-a_(3))^(2))

If (a_(2)a_(3))/(a_(1)a_(4))=(a_(2)+a_(3))/(a_(1)+a_(4))=3((a_(2)-a_(3))/(a_(1)-a_(4))) , then a_(1),a_(2),a_(3),a_(4) are in

det[[1+a_(1),1,11,1+a_(2),11,1,1+a_(3)]]=a_(1)a_(2)a_(3)(1+(1)/(a_(1))+(1)/(a_(2))+(1)/(a_(3)))

If a_(1),a_(2),a_(3),dots,a_(n+1) are in A.P.then (1)/(a_(1)a_(2))+(1)/(a_(2)a_(3))...+(1)/(a_(n)a_(n+1)) is

If a_(1),a_(2),a_(3),,a_(n) are an A.P.of non-zero terms, prove that _(1)(1)/(a_(1)a_(2))+(1)/(a_(2)a_(3))++(1)/(a_(n-1)a_(n))=(n-1)/(a_(1)a_(n))

,1+a_(1),a_(2),a_(3)a_(1),1+a_(2),a_(3)a_(1),a_(2),1+a_(3)]|=0, then

Let a_(1),a_(2),a_(3),...a_(n) be an AP.Prove that: (1)/(a_(1)a_(n))+(1)/(a_(2)a_(n-1))+(1)/(a_(3)a_(n-2))+......+(1)/(a_(n)a_(1))=

Let the sequence a_(1),a_(2),a_(3),...,a_(n) from an A.P.Then the value of a_(1)^(2)-a_(2)^(2)+a_(3)^(2)-...+a_(2n-1)^(2)-a_(2n)^(2) is (2n)/(n-1)(a_(2n)^(2)-a_(1)^(2))(b)(n)/(2n-1)(a_(1)^(2)-a_(2n)^(2))(n)/(n+1)(a_(1)^(2)-a_(2n)^(2))(d)(n)/(n-1)(a_(1)^(2)+a_(2n)^(2))