Home
Class 12
PHYSICS
The value of integral I = int(0)^(pi//4)...

The value of integral `I = int_(0)^(pi//4) (tan^(2)x + 2sin^(2)x) dx` is:

A

2

B

0

C

`-(1)/(2)`

D

`(1)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
D

The value ……….
`I = overset(pi//4)underset(0)int (tan^(2)x+2sin^(2)x)dx`
`= overset(pi//4)underset(0)int (sec^(2)x - 1+1-cos2x)dx`
`= overset(pi//4)underset(0)int sec^(2)x dx - overset(pi//4)underset(0)int cos 2x dx`
`=|tan x|_(0)^(pi//4) - |(sin2x)/(2)|_(0)^(pi//4)`
`=(1-0) - ((1)/(2) - 0) = (1)/(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(pi//4) sin^(-4)x dx , is

The value of the integral int_(0)^(pi//2) sin^(6) x dx , is

The value of the integral int _(0)^(pi//2) sin ^(5) x dx is

The value of the integral int_(0)^(pi) | sin 2x| dx is

The value of the integral int_(0) ^(pi//2) sin ^3 x dx is :

Evaluate the integrals : I = int_(0)^(pi//4) (x^(2))/( x^(2) + 1) dx ,

The value of the integral int _(0)^(pi//2) log | tan x| dx is

The value of the integral int_(0)^(pi) (x sin x)/(1+cos^(2)x)dx , is

The value of the integral int_(0)^(pi//4) (sinx+cosx)/(3+sin2x)dx ,is

The value of the integral int_(0)^(pi)x log sin x dx is