Home
Class 12
PHYSICS
If vecAxxvecB=vecC, then choose the inco...

If `vecAxxvecB=vecC`, then choose the incorrect option : [`vecA and vecB` are non zero vectors]

A

`vecC` is perpendicular to `(vecA+vecB)`

B

`vecC` is perpendicular to `(vecA-vecB)`

C

`veC` is perpendicular to `(vecAxxvecB)`

D

`vecC` isperpendicular to `vecA` and `vecB`

Text Solution

Verified by Experts

The correct Answer is:
C

If `vecA xx vecB = vecC` ………………
`vecC` is perpendicular to `vecA, vecB, (vecA+vecB), (vecA-vecB)`
as all these asre in the same plane.
`vecC` is parallel to `(vecAxxvecB)`.
Promotional Banner

Similar Questions

Explore conceptually related problems

Let veca,vecb and vecc be the three non-coplanar vectors and vecd be a non zero vector which is perpendicular to veca+vecb+vecc and is represented as vecd=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) . Then,

If (vecaxxvecb)xx(vecbxxvecc)=vecb, where veca,vecb and vecc are non zero vectors then (A) veca,vecb and vecc can be coplanar (B) veca,vecb and vecc must be coplanar (C) veca,vecb and vecc cannot be coplanar (D) none of these

If vecP = (vecbxxvecc)/([vecavecbvecc]).vecq=(veccxxveca)/([veca vecb vecc])and vecr = (vecaxxvecb)/([veca vecbvecc]), " where " veca,vecb and vecc are three non- coplanar vectors then the value of the expression (veca + vecb + vecc ). (vecq+ vecq+vecr) is

If (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc) where veca, vecb and vecc are any three vectors such that veca.vecb!=0, vecb. vecc!=0 then veca and vecc are

[(veca xxvecb)xx(vecb xx vecc) (vecb xxvecc) xx (vecc xxveca) (veccxxveca) xx (veca xx vecb)] is equal to ( where veca, vecb and vecc are non - zero non- colanar vectors).

given that veca. vecb = veca.vecc, veca xx vecb= veca xx vecc and veca is not a zero vector. Show that vecb=vecc .

given that veca. vecb = veca.vecc, veca xx vecb= veca xx vecc and veca is not a zero vector. Show that vecb=vecc .

Show that the vectors veca-2vecb+3vecc,-2veca+3vecb-4vecc and - vecb+2vecc are coplanar vector where veca, vecb, vecc are non coplanar vectors

Show that the vectors 2veca-vecb+3vecc, veca+vecb-2vecc and veca+vecb-3vecc are non-coplanar vectors (where veca, vecb, vecc are non-coplanar vectors).

If vecr.veca=vecr.vecb=vecr.vecc=1/2 for some non zero vector vecr and veca,vecb,vecc are non coplanar, then the area of the triangle whose vertices are A(veca),B(vecb) and C(vecc0 is (A) |[veca vecb vecc]| (B) |vecr| (C) |[veca vecb vecr]vecr| (D) none of these