Home
Class 12
MATHS
If A=1/pi[[sin^-1(xpi),tan^-1(x/pi)],[si...

If `A=1/pi[[sin^-1(xpi),tan^-1(x/pi)],[sin^-1(x/pi),cot^-1(xpi)]]` and `B=1/pi[[-cos^-1(xpi),tan^-1(x/pi)],[sin^-1(x/pi),-tan^-1(xpi)]]` find the value of A-B in terms of identity matrix

Text Solution

Verified by Experts

A-B=`1/pi[[sin^(-1)(xpi)+cos^(-1)(xpi),0],[0,cot^(-1)(pix)+tan^(-1)(pix)]]`
`=1/pi[[pi/2,0],[0,pi/2]]`
`=1/2[[1,0],[0,1]]`
A-B=`1/2I`.
Promotional Banner

Similar Questions

Explore conceptually related problems

If |x pi| le 1, A = 1/pi [(sin^-1(xpi), tan^-1(x/pi)),(sin^-1(x/pi) ,cot^-1(xpi))] and B = 1/pi[(-cos^-1(xpi), tan^-1(x/pi)),(sin^-1(x/pi) , -tan^-1(xpi))] then A - B is equal to

If A=1/pi[[sin^(-1)(pix),tan^(-1)(x/pi)], [sin^(-1)(x/pi),cot^(-1)(pix)]] and B=1/pi[[-cos^(-1)(pix),tan^(-1)(x/pi)],[sin^(-1)(x/pi),-tan^(-1)(pix)]] , then A-B is equal to I (b) 0 (c) 2I (d) 1/2I

If A=1/pi[[sin^(-1)(pix),tan^(-1)(x/pi)], [sin^(-1)(x/pi),cot^(-1)(pix)]] and B=1/pi[[-cos^(-1)(pix),tan^(-1)(x/pi)],[sin^(-1)(x/pi),-tan^(-1)(pix)]] , then A-B is equal to I (b) 0 (c) 2I (d) 1/2I

If A = 1/pi [(sin^(-1)(xpi),tan^(-1)(x/pi)),(sin^(-1)(x/pi),cot^(-1)(pix))] B = 1/pi [(-cos^(-1)(xpi),tan^(-1)(x/pi)),(sin^(-1)(x/pi),-tan^(-1)(pix))] then A-B is equal to :

If A=1/pi[sin^(-1)(pix)tan^(-1)(x/pi)sin^(-1)(x/pi)cot^(-1)(pix)] and B=1/pi[-cot^(-1)(pix)tan^(-1)(x/pi)sin^(-1)(x/pi)-tan^(-1)(pix)] , then A-B is equal to I (b) 0 (c) 2I (d) 1/2I

If A=(1)/(pi)[{:(sin^(-1)(pix),tan^(-1)(x//pi)),(sin^(-1)(x//pi),cot^(-1)(pix)):}] and B=(1)/(pi)[{:(-cos^(-1)(pix),tan^(-1)(x//pi)),(sin^(-1)(pi//x),-tan^(-1)(pix)):}] then find (A-B)

If A=(1)/(pi)[{:(sin^(-1)(pix),tan^(-1)((x)/(pi))),(sin^(-1)((x)/(pi)),cot^(-1)(pix)):}] and B=(1)/(pi) [{:(-cos^(-1)(pix), tan^(-1)((x)/(pi))),(sin^(-1)((x)/(pi)),-tan^(-1)(pix)):}] then A-B is equal to