Home
Class 12
MATHS
" solve ":cos^(-1)x+sin^(-1)(1)/(sqrt(5)...

" solve ":cos^(-1)x+sin^(-1)(1)/(sqrt(5))=(pi)/(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for x : cot^(-1)x + sin^(-1)(1/sqrt(5)) = pi/4

Solve for x : cot^(-1)x+ sin^(-1)( 1/sqrt(5)) = pi/4

Number ofsolution(s) ofthe equation cos^(-1)sqrt(x)-sin^(-1)sqrt(x-1)+cos^(-1)sqrt(1-x)-sin^(-1)((1)/(sqrt(x)))=(pi)/(2)

Solve : cos ^(-1) x + sin ^(-1) "" (x)/( 2) = (pi)/(6)

cos^(-1)""(2)/(sqrt(5))+sin ^(-1)""(1)/(sqrt(10))=(pi)/(4)

Solve cos^(-1)(sin(cos^(-1)x))=(pi)/(3)

Solve : cos^(-1) (sin cos^(-1)x ) =(pi)/(6) .

Solve the following equation for x. sin^(-1)(6x)+sin^(-1) (6sqrt(3)x)= -(pi)/(2) .

Solve the following equations: sin^(-1)(3x)/(5)+sin^(-1)(4x)/(5)=sin^(-1)xsin^(-1)6x+sin^(-1)6sqrt(3)x=(pi)/(2)