Home
Class 10
MATHS
If x and y are real numbers such that ...

If `x and y` are real numbers such that `(x+sqrt(1+x^2))(y+sqrt(1+y^2))=1`.Then find `x+y`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x, y are rational numbers such that (x+y)+(x-2y)sqrt(2)=2x-y+(x-y-1)sqrt(5) then

If x, y are rational numbers such that (x+y)+(x-2y)sqrt(2)=2x-y+(x-y-1)sqrt(5) then

If x, y are rational numbers such that x+ y+(x-2y)sqrt2=2x-y+(x-y-1)sqrt6 then

If x,y,z are positive real numbers show that: sqrt(x^(-1)y)*sqrt(y^(-1)z)*sqrt(z^(-1)x)=1

If x ,y ,z are positive real number, then show that sqrt((x^(-1)y) x sqrt((y^(-1)z) x sqrt((z^(-1)x) =1

If x , y ,z are positive real numbers show that: sqrt(x^(-1)y)dotsqrt(y^(-1)z)dotsqrt(z^(-1)x)=1

If x , y ,z are positive real numbers show that: sqrt(x^(-1)y)dotsqrt(y^(-1)z)dotsqrt(z^(-1)x)=1

If sin^(-1) x + sin^(-1) y = pi/2 , prove that x sqrt(1-x^2) + y sqrt(1-y^2) =1 .

If x,y,z are positive real numbers, prove that: sqrt(x^-1 y).sqrt(y^-1z).sqrt(z^(-1)x)=1