Home
Class 10
MATHS
If a, b, c are in AP, then prove that (...

If a, b, c are in AP, then prove that `(a-c)^2 =4(b^2 -ac)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a, b, c are in A.P., then prove that : (a-c)^2 =4(b^2 -ac) .

if a,b,c are in AP, prove that (a-c)^(2) = 4( b^(2) -ac)

If a ,b ,c are in A.P., then prove that: (a – c)^2 = 4(b^2 – ac).

If a, b, c are in A.P., then prove that : (i) ab+bc=2b^(2) (ii) (a-c)^(2)=4(b^(2)-ac) (iii) a^(2)+c^(2)+4ca=2(ab+bc+ca).

If a, b, c are in A.P., then prove that : (i) ab+bc=2b^(2) (ii) (a-c)^(2)=4(b^(2)-ac) (iii) a^(2)+c^(2)+4ca=2(ab+bc+ca).

If a,b,c are in A.P. prove that (a-c)^(2)=4(a-b)(b-c)

If a,b,c are in A.P., show that (a-c)^(2)=4(b^(2)-ac) .

If a,b , c are in AP, then, find the value of (a-c)^2/(b^2-ac)

If a,b,c are in A.P.,prove that: (a-c)^(2)=4(a-b)(b-c)a^(2)+c^(2)+4ac=2(ab+bc+ca)a^(3)+c^(3)+6abc=8b^(3)