Home
Class 12
MATHS
Evaluate [ i^(14) - (1/i)^(34)]^2...

Evaluate ` [ i^(14) - (1/i)^(34)]^2`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( [ i^{14} - (1/i)^{34}]^2 \), we will follow these steps: ### Step 1: Simplify \( i^{14} \) We know that \( i \) is the imaginary unit, defined as \( i = \sqrt{-1} \). The powers of \( i \) cycle every 4: - \( i^1 = i \) - \( i^2 = -1 \) - \( i^3 = -i \) - \( i^4 = 1 \) To find \( i^{14} \), we can reduce the exponent modulo 4: \[ 14 \mod 4 = 2 \] Thus, \[ i^{14} = i^2 = -1 \] ### Step 2: Simplify \( (1/i)^{34} \) We can rewrite \( \frac{1}{i} \) as \( -i \) (since \( \frac{1}{i} \cdot i = 1 \)). Therefore, \[ (1/i)^{34} = (-i)^{34} \] Now, we simplify \( (-i)^{34} \). The powers of \( -i \) also cycle every 4: - \( (-i)^1 = -i \) - \( (-i)^2 = -1 \) - \( (-i)^3 = i \) - \( (-i)^4 = 1 \) Now, we find \( 34 \mod 4 \): \[ 34 \mod 4 = 2 \] Thus, \[ (-i)^{34} = (-i)^2 = -1 \] ### Step 3: Substitute back into the expression Now we substitute back into our original expression: \[ i^{14} - (1/i)^{34} = -1 - (-1) = -1 + 1 = 0 \] ### Step 4: Square the result Now we square the result: \[ [ i^{14} - (1/i)^{34}]^2 = 0^2 = 0 \] ### Final Answer Thus, the final answer is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment (Section -A) (objective Type Questions ( one option is correct)|47 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment (Section -B) (objective Type Questions ( one option is correct)|78 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE|Exercise section-J (Aakash Challengers Qestions)|16 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE|Exercise SECTION - J ( Aakash Challengers Questions )|14 Videos

Similar Questions

Explore conceptually related problems

[i^(17)-((1)/(i))^(34)]^(2)=2i .

{i^(17)-((1)/(i))^(34)}^(2)

Evaluate: [i^(19)+((1)/(i))^(25)]^(2)

Evaluate (i^17-1/i^34)^3 .

Evaluate 1+i+i^2+i^3

Find the value of (1+i)(1+i^(2))(1+i^(3)) .

the value of ((i^(11)+i^(12)+i^(13)+i^(14) +i^(15)))/((1+i)) is

Evaluate: (i) int1/(4x^2+12 x+5)\ dx (ii) int1/(x^2-10 x+34)\ dx

Evaluate: (i^(2)+i^(4)+i^(6)+i^(7))/(1+i^(2)+i^(3))

Find the value of (1+i)(1+i^(2))(1+i^(3))(1+i^(4))

AAKASH INSTITUTE-COMPLEX NUMBERS AND QUADRATIC EQUATIONS-Try Yourself
  1. Evaluate 2i^(2)+ 6i^(3)+3i^(16) -6i^(19) + 4i^(25)

    Text Solution

    |

  2. Evaluate [ i^(14) - (1/i)^(34)]^2

    Text Solution

    |

  3. Plot the complex number -4 + 5i on the Argand plane.

    Text Solution

    |

  4. Plot the complex number -3 + 7i on the Argand plane.

    Text Solution

    |

  5. Write the complex number represented by the point (-2,5)

    Text Solution

    |

  6. Write the complex number represented by the point (-6,-7)

    Text Solution

    |

  7. Find the values of x and y , if (3y -2) + (5 -4x)i=0 , where , x y i...

    Text Solution

    |

  8. Find the values of x and y , if x + 4yi = ix + y + 3 where x ,y in ...

    Text Solution

    |

  9. If z(1) = 4 -I and z(2) = - 3 + 7i then find (i) z(1) +z(2) (...

    Text Solution

    |

  10. If z(1) = 6 + 9i and z(2) = 5 + 2i then find z(1)/z(2)

    Text Solution

    |

  11. if z= 1 +i, z(2)= 2 -3i and z(3) = 5+ 2i then find z(1)-z(2)+3z(3)

    Text Solution

    |

  12. if z(1)=2+3i, z(2)=1-iand z(3) = 3+ 4i,then find z(1)z(2) +z(3)

    Text Solution

    |

  13. if z(1) =-1 + 3i and z(2)= 2 + i then find 2(z(1) +z(2))

    Text Solution

    |

  14. find the multiplicative inverse of the complex number 2 + 9i .

    Text Solution

    |

  15. Express ( 4 - 5/2 i)^(2) in the form of a + ib.

    Text Solution

    |

  16. express (1 -i)^(4) in the form of a +ib.

    Text Solution

    |

  17. Express ( 1/3 + 4/3 i)^(2) in the form of a + ib.

    Text Solution

    |

  18. if z(1) = 3i and z(2) =1 + 2i , then find z(1)z(2) -z(1)

    Text Solution

    |

  19. Express 1/(1+cos theta-i sin theta) in the form of a +ib.

    Text Solution

    |

  20. Express (1 /(2 -2i)+3/(1+i)) ((3+ 4i)/(2-4i)) in the form of a +ib

    Text Solution

    |