Home
Class 12
MATHS
Express (1 /(2 -2i)+3/(1+i)) ((3+ 4i)/(2...

Express `(1 /(2 -2i)+3/(1+i)) ((3+ 4i)/(2-4i))` in the form of a +ib

Text Solution

AI Generated Solution

The correct Answer is:
To express the given expression \((\frac{1}{2 - 2i} + \frac{3}{1 + i}) \cdot \frac{3 + 4i}{2 - 4i}\) in the form \(a + bi\), we will follow these steps: ### Step 1: Simplify \(\frac{1}{2 - 2i}\) To simplify \(\frac{1}{2 - 2i}\), we multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{1}{2 - 2i} \cdot \frac{2 + 2i}{2 + 2i} = \frac{2 + 2i}{(2 - 2i)(2 + 2i)} = \frac{2 + 2i}{4 + 4} = \frac{2 + 2i}{8} = \frac{1}{4} + \frac{1}{4}i \] ### Step 2: Simplify \(\frac{3}{1 + i}\) Similarly, we simplify \(\frac{3}{1 + i}\) by multiplying by the conjugate: \[ \frac{3}{1 + i} \cdot \frac{1 - i}{1 - i} = \frac{3(1 - i)}{(1 + i)(1 - i)} = \frac{3(1 - i)}{1 + 1} = \frac{3(1 - i)}{2} = \frac{3}{2} - \frac{3}{2}i \] ### Step 3: Combine the two fractions Now we can combine the two simplified fractions: \[ \frac{1}{4} + \frac{1}{4}i + \left(\frac{3}{2} - \frac{3}{2}i\right) \] Finding a common denominator (4): \[ \frac{1}{4} + \frac{3 \cdot 2}{4} - \left(\frac{3}{2}i + \frac{1}{4}i\right) = \frac{1 + 6}{4} - \left(\frac{6}{4}i + \frac{1}{4}i\right) = \frac{7}{4} - \frac{7}{4}i \] ### Step 4: Multiply by \(\frac{3 + 4i}{2 - 4i}\) Next, we need to multiply this result by \(\frac{3 + 4i}{2 - 4i}\). First, simplify \(\frac{3 + 4i}{2 - 4i}\): Multiply by the conjugate: \[ \frac{3 + 4i}{2 - 4i} \cdot \frac{2 + 4i}{2 + 4i} = \frac{(3 + 4i)(2 + 4i)}{(2 - 4i)(2 + 4i)} \] Calculating the denominator: \[ (2 - 4i)(2 + 4i) = 4 + 16 = 20 \] Calculating the numerator: \[ (3 + 4i)(2 + 4i) = 6 + 12i + 8i + 16i^2 = 6 + 20i - 16 = -10 + 20i \] So, \[ \frac{3 + 4i}{2 - 4i} = \frac{-10 + 20i}{20} = -\frac{1}{2} + i \] ### Step 5: Multiply the results Now we multiply \(\frac{7}{4} - \frac{7}{4}i\) by \(-\frac{1}{2} + i\): \[ \left(\frac{7}{4} - \frac{7}{4}i\right) \cdot \left(-\frac{1}{2} + i\right) \] Using the distributive property: \[ = \frac{7}{4} \cdot -\frac{1}{2} + \frac{7}{4}i - \frac{7}{4}i \cdot -\frac{1}{2} - \frac{7}{4}i^2 \] Calculating each term: 1. \(-\frac{7}{8}\) 2. \(+\frac{7}{4}i\) 3. \(+\frac{7}{8}i\) 4. \(+\frac{7}{4}\) (since \(i^2 = -1\)) Combining real and imaginary parts: Real part: \(-\frac{7}{8} + \frac{7}{4} = -\frac{7}{8} + \frac{14}{8} = \frac{7}{8}\) Imaginary part: \(\frac{7}{4}i + \frac{7}{8}i = \frac{14}{8}i + \frac{7}{8}i = \frac{21}{8}i\) ### Final Result Thus, the expression in the form \(a + bi\) is: \[ \frac{7}{8} + \frac{21}{8}i \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment (Section -A) (objective Type Questions ( one option is correct)|47 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment (Section -B) (objective Type Questions ( one option is correct)|78 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE|Exercise section-J (Aakash Challengers Qestions)|16 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE|Exercise SECTION - J ( Aakash Challengers Questions )|14 Videos

Similar Questions

Explore conceptually related problems

Express (2+3i)/(2-i) in the form a+ib

express (1 -i)^(4) in the form of a +ib.

Express (2+i)/(2-i) in the form a+ib

Express (1+i)^(4) in the form of a+ib

Express ( 1/3 + 4/3 i)^(2) in the form of a + ib.

(1)/(1-2i)+(3)/(1+4i)

Express ( 4 - 5/2 i)^(2) in the form of a + ib.

Convert [(3+2i)/( 3-2i)+ (3 -2i)/(3+2i)] in the form of (a+ib) .

Convert ((1)/(2)+2i)^(3) in the form of a+ib .

Reduce ((1)/(1+2i)+(3)/(1-i))((3-2i)/(1+3i)) to the form (a + ib).

AAKASH INSTITUTE-COMPLEX NUMBERS AND QUADRATIC EQUATIONS-Try Yourself
  1. if z(1) = 3i and z(2) =1 + 2i , then find z(1)z(2) -z(1)

    Text Solution

    |

  2. Express 1/(1+cos theta-i sin theta) in the form of a +ib.

    Text Solution

    |

  3. Express (1 /(2 -2i)+3/(1+i)) ((3+ 4i)/(2-4i)) in the form of a +ib

    Text Solution

    |

  4. Show that the complex number ((4+3i)/(3 + 4i)) ((4 -3i)/(3-4i)) is pu...

    Text Solution

    |

  5. Find real q such that (3+2isintheta)/(1-2isintheta) is purely real.

    Text Solution

    |

  6. Plot the conjegate of the complex number 2-3i on the Argand plane.

    Text Solution

    |

  7. Plot the conjegate of the complex number -7-4i on the Argand plane. ]

    Text Solution

    |

  8. Mutiply ( 5 +2i) by its conjugate.

    Text Solution

    |

  9. Find the conjugate of ((1-2i)^(2))/(2 + i)

    Text Solution

    |

  10. if z = 2 + i + 4i^(2) -6i^(3) then verify that (i) (bar(z^(2)) = (...

    Text Solution

    |

  11. if z=3 -2i, then verify that (i) z + barz = 2Rez (ii) z - bar...

    Text Solution

    |

  12. if z(1) = 3-i and z(2) = -3 +i, then find Re ((z(1)z(2))/(barz(1))...

    Text Solution

    |

  13. if z(1)=2-i, and z(2) = 1+ i, then find Im(1/(z(1)z(2)))

    Text Solution

    |

  14. Find real values of x and y for which the complex numbers 7 + ix^(2)y...

    Text Solution

    |

  15. Find real number x and y if (x-iy)(4 + 7i) is the conjugate of 29-2i.

    Text Solution

    |

  16. find the conjugate of (sqrt2 -isqrt2)/(2sqrt5-isqrt2)

    Text Solution

    |

  17. If ((a+i)^2)/((2a-i))=p+i q , show that: p^2+q^2=((a^2+1)^2)/((4a^2+1)...

    Text Solution

    |

  18. Represent the modulus of 3+4i in the Argand plane.

    Text Solution

    |

  19. Represent the modulus of 1+I, in the Argand plane.

    Text Solution

    |

  20. Find the modulus of (2 -3i)/( 4+i)

    Text Solution

    |