Home
Class 12
MATHS
Find the modulus of (2 -3i)/( 4+i)...

Find the modulus of ` (2 -3i)/( 4+i)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the modulus of the complex number \(\frac{2 - 3i}{4 + i}\), we can follow these steps: ### Step 1: Find the modulus of the numerator and the denominator separately. The modulus of a complex number \(a + bi\) is given by \(\sqrt{a^2 + b^2}\). **Numerator:** For \(2 - 3i\): - \(a = 2\) - \(b = -3\) \[ \text{Modulus of } (2 - 3i) = \sqrt{2^2 + (-3)^2} = \sqrt{4 + 9} = \sqrt{13} \] **Denominator:** For \(4 + i\): - \(a = 4\) - \(b = 1\) \[ \text{Modulus of } (4 + i) = \sqrt{4^2 + 1^2} = \sqrt{16 + 1} = \sqrt{17} \] ### Step 2: Use the property of moduli of complex numbers. The modulus of the quotient of two complex numbers is the quotient of their moduli: \[ \left| \frac{2 - 3i}{4 + i} \right| = \frac{|2 - 3i|}{|4 + i|} = \frac{\sqrt{13}}{\sqrt{17}} \] ### Step 3: Rationalize the denominator. To rationalize the denominator, multiply the numerator and the denominator by \(\sqrt{17}\): \[ \frac{\sqrt{13}}{\sqrt{17}} \cdot \frac{\sqrt{17}}{\sqrt{17}} = \frac{\sqrt{13} \cdot \sqrt{17}}{17} = \frac{\sqrt{221}}{17} \] ### Final Answer: The modulus of \(\frac{2 - 3i}{4 + i}\) is: \[ \frac{\sqrt{221}}{17} \] ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment (Section -A) (objective Type Questions ( one option is correct)|47 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment (Section -B) (objective Type Questions ( one option is correct)|78 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE|Exercise section-J (Aakash Challengers Qestions)|16 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE|Exercise SECTION - J ( Aakash Challengers Questions )|14 Videos

Similar Questions

Explore conceptually related problems

Find the modulus of 3 + i

Find the modulus of (2+3i)/(1-2i)

Find the modulus of: (3-i)/(3+i)

Find the modulus of (3+4i)/(12+5i)

Find the modulus of ((3+2i)^(2))/(4-3i)

Find the modulus of following: (2+i)/(4i+(1+i)^(2))

The modulus of ((2+3i)^(2))/(2+i) is

Find the modulus of ((1+3i)(2-5i))/((2-sqrt(6i))(-3+2sqrt(5i)))

Find the modulus of (1+i)/(1-i)-(1-i)/(1+i)

Find the modulus of (1+i)/(1-i)-(1-i)/(1+i)