Home
Class 12
MATHS
the value of ((i^(11)+i^(12)+i^(13)+i^(...

the value of `((i^(11)+i^(12)+i^(13)+i^(14) +i^(15)))/((1+i))`is

A

`(-(1+i))/2`

B

`((1-i))/2`

C

` ((1+i))/2`

D

`1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{i^{11} + i^{12} + i^{13} + i^{14} + i^{15}}{1 + i}\), we will follow these steps: ### Step 1: Calculate the powers of \(i\) The powers of \(i\) cycle every four terms: - \(i^1 = i\) - \(i^2 = -1\) - \(i^3 = -i\) - \(i^4 = 1\) Using this cycle, we can calculate: - \(i^{11} = i^{4 \cdot 2 + 3} = i^3 = -i\) - \(i^{12} = i^{4 \cdot 3} = 1\) - \(i^{13} = i^{4 \cdot 3 + 1} = i^1 = i\) - \(i^{14} = i^{4 \cdot 3 + 2} = i^2 = -1\) - \(i^{15} = i^{4 \cdot 3 + 3} = i^3 = -i\) Now, we can sum these values: \[ i^{11} + i^{12} + i^{13} + i^{14} + i^{15} = (-i) + 1 + i + (-1) + (-i) \] ### Step 2: Simplify the sum Combining the terms: \[ (-i + i - i) + (1 - 1) = -i \] So, we have: \[ i^{11} + i^{12} + i^{13} + i^{14} + i^{15} = -i \] ### Step 3: Substitute into the original expression Now substituting back into the original expression: \[ \frac{-i}{1 + i} \] ### Step 4: Rationalize the denominator To simplify \(\frac{-i}{1 + i}\), we multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{-i(1 - i)}{(1 + i)(1 - i)} = \frac{-i + i^2}{1^2 - i^2} = \frac{-i - 1}{1 - (-1)} = \frac{-i - 1}{2} \] ### Step 5: Final simplification This can be rewritten as: \[ \frac{-1 - i}{2} = -\frac{1}{2} - \frac{i}{2} \] Thus, the final value of the expression \(\frac{i^{11} + i^{12} + i^{13} + i^{14} + i^{15}}{1 + i}\) is: \[ -\frac{1}{2} - \frac{i}{2} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment (Section -B) (objective Type Questions ( one option is correct)|78 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment (Section -C) (objective Type Questions ( more thena one options are correct )|35 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE|Exercise Try Yourself|60 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE|Exercise SECTION - J ( Aakash Challengers Questions )|14 Videos

Similar Questions

Explore conceptually related problems

The value of i^(0)+i^(1)+i^(2)+i^(3)+i^(4) is

The value of i^(1+i) is

The value of (i+1)(i-1) is

Find the value of i^11 - i^10

The value of (1+i)/(1-i) is

The value of (1+i) (1-i^(2)) (1+i^(4))(1-i^(5)) is

The value of (1)/(1-i)-(1)/(1+i) is

Find the value of (1+i)(1+i^(2))(1+i^(3)) .

The value of (i^(5)+i^(6)+i^(7)+i^(8)+i^(9))/(1+i) is (1)/(2)(1+i)(b)(1)/(2)(1-i)(c)1(d)(1)/(2)