Home
Class 12
MATHS
(2/(1-i) + 3/(1+i))((2+3i)/(4+5i))is equ...

`(2/(1-i) + 3/(1+i))((2+3i)/(4+5i))`is equal to

A

` -117/82 - 13/82 i`

B

`-117/82 + 13/82 i`

C

`117/82 - (13i)/82`

D

`117/82 + ( 13i)/82 `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\frac{2}{1-i} + \frac{3}{1+i})\left(\frac{2+3i}{4+5i}\right)\), we will follow these steps: ### Step 1: Simplify \(\frac{2}{1-i}\) and \(\frac{3}{1+i}\) To simplify \(\frac{2}{1-i}\), we multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{2}{1-i} \cdot \frac{1+i}{1+i} = \frac{2(1+i)}{(1-i)(1+i)} = \frac{2(1+i)}{1^2 - i^2} = \frac{2(1+i)}{1 - (-1)} = \frac{2(1+i)}{2} = 1+i \] Now, for \(\frac{3}{1+i}\): \[ \frac{3}{1+i} \cdot \frac{1-i}{1-i} = \frac{3(1-i)}{(1+i)(1-i)} = \frac{3(1-i)}{1^2 - i^2} = \frac{3(1-i)}{1 - (-1)} = \frac{3(1-i)}{2} = \frac{3}{2} - \frac{3}{2}i \] ### Step 2: Combine the two fractions Now, we can combine \(1+i\) and \(\frac{3}{2} - \frac{3}{2}i\): \[ 1+i + \left(\frac{3}{2} - \frac{3}{2}i\right) = \left(1 + \frac{3}{2}\right) + \left(1 - \frac{3}{2}\right)i = \frac{5}{2} - \frac{1}{2}i \] ### Step 3: Simplify \(\frac{2+3i}{4+5i}\) Next, we simplify \(\frac{2+3i}{4+5i}\) by multiplying by the conjugate of the denominator: \[ \frac{2+3i}{4+5i} \cdot \frac{4-5i}{4-5i} = \frac{(2+3i)(4-5i)}{(4+5i)(4-5i)} = \frac{8 - 10i + 12i - 15i^2}{16 - 25(-1)} = \frac{8 + 2i + 15}{41} = \frac{23 + 2i}{41} \] ### Step 4: Multiply the two results Now we multiply \(\left(\frac{5}{2} - \frac{1}{2}i\right)\) and \(\left(\frac{23 + 2i}{41}\right)\): \[ \left(\frac{5}{2} - \frac{1}{2}i\right) \cdot \left(\frac{23 + 2i}{41}\right) = \frac{1}{41} \left( \left(\frac{5}{2} \cdot 23 + \frac{5}{2} \cdot 2i - \frac{1}{2}i \cdot 23 - \frac{1}{2}i \cdot 2i\right) \right) \] Calculating each term: - \(\frac{5}{2} \cdot 23 = \frac{115}{2}\) - \(\frac{5}{2} \cdot 2i = 5i\) - \(-\frac{1}{2}i \cdot 23 = -\frac{23}{2}i\) - \(-\frac{1}{2}i \cdot 2i = 1\) Combining these: \[ \frac{1}{41} \left( \frac{115}{2} + 1 + (5 - \frac{23}{2})i \right) = \frac{1}{41} \left( \frac{117}{2} + \left(5 - \frac{23}{2}\right)i \right) \] Calculating \(5 - \frac{23}{2} = \frac{10}{2} - \frac{23}{2} = -\frac{13}{2}\): \[ = \frac{1}{41} \left( \frac{117}{2} - \frac{13}{2}i \right) = \frac{117}{82} - \frac{13}{82}i \] ### Final Result Thus, the final result is: \[ \frac{117}{82} - \frac{13}{82}i \] ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment (Section -B) (objective Type Questions ( one option is correct)|78 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment (Section -C) (objective Type Questions ( more thena one options are correct )|35 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE|Exercise Try Yourself|60 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE|Exercise SECTION - J ( Aakash Challengers Questions )|14 Videos

Similar Questions

Explore conceptually related problems

(1+2i)/(1+3i) is equal to

((1+i)^(3))/(2+i) is equal to

Prove that: (i) [((3+2i)/(2-5i))+((3-2i)/(2+5i))] is rational (ii) [((2-3i)/(3-4i))((2+3i)/(3+4i))] is real.

Express (1 /(2 -2i)+3/(1+i)) ((3+ 4i)/(2-4i)) in the form of a +ib

(4+3i) +(7-4i)-(3+5i)+i^(25) is equal to

1+i+i^(2)+i^(3) is equal to

1+i+i^(2)+i^(3) is equal to

Reduce ((1)/(1-4i)-(2)/(1+i))((3-4i)/(5+i)) to the standard form.