Home
Class 12
MATHS
If z= 1/((1+i)(1-2i)) , then |z| is...

If ` z= 1/((1+i)(1-2i))` , then |z| is

A

`2/10`

B

` sqrt7/10`

C

`9/sqrt10`

D

`1/sqrt10`

Text Solution

AI Generated Solution

The correct Answer is:
To find the modulus of the complex number \( z = \frac{1}{(1+i)(1-2i)} \), we will follow these steps: ### Step 1: Simplify the denominator First, we need to simplify the expression in the denominator: \[ (1+i)(1-2i) \] Using the distributive property (FOIL method): \[ = 1 \cdot 1 + 1 \cdot (-2i) + i \cdot 1 + i \cdot (-2i) \] \[ = 1 - 2i + i - 2i^2 \] Since \( i^2 = -1 \), we can replace \( -2i^2 \) with \( 2 \): \[ = 1 - 2i + i + 2 \] \[ = 3 - i \] ### Step 2: Write \( z \) in simplified form Now we can express \( z \): \[ z = \frac{1}{3 - i} \] ### Step 3: Rationalize the denominator To find the modulus, we can rationalize the denominator by multiplying the numerator and denominator by the conjugate of the denominator: \[ z = \frac{1 \cdot (3 + i)}{(3 - i)(3 + i)} \] Calculating the denominator: \[ (3 - i)(3 + i) = 3^2 - i^2 = 9 - (-1) = 9 + 1 = 10 \] Thus, we have: \[ z = \frac{3 + i}{10} \] ### Step 4: Find the modulus of \( z \) The modulus of a complex number \( z = a + bi \) is given by: \[ |z| = \sqrt{a^2 + b^2} \] In our case, \( a = \frac{3}{10} \) and \( b = \frac{1}{10} \): \[ |z| = \sqrt{\left(\frac{3}{10}\right)^2 + \left(\frac{1}{10}\right)^2} \] \[ = \sqrt{\frac{9}{100} + \frac{1}{100}} = \sqrt{\frac{10}{100}} = \sqrt{\frac{1}{10}} = \frac{1}{\sqrt{10}} = \frac{\sqrt{10}}{10} \] ### Final Answer Thus, the modulus \( |z| \) is: \[ |z| = \frac{\sqrt{10}}{10} \] ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment (Section -B) (objective Type Questions ( one option is correct)|78 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment (Section -C) (objective Type Questions ( more thena one options are correct )|35 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE|Exercise Try Yourself|60 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE|Exercise SECTION - J ( Aakash Challengers Questions )|14 Videos

Similar Questions

Explore conceptually related problems

If (1+i)z=(1-i)bar(z) then z is

if (1+i)z=(1-i)bar(z) then z is

if z = ((1+i)/(1-i)) then z^(2) equals

If ((1+i) z= (1-i))bar(z), then

If z=(1+2i)/(1-(1-i)^(2)), then arg (z) equals a.0 b.(pi)/(2) c.pi d .non of these

If z=(1-i)^(6)+(1-i) , then find the modulus of z (i.e., |z|) and multiplicative inverse of z (i.e., z^(-1) ).

If z=(1+2i)/(2-i)-(2-i)/(1+2i), then what is the value of z^(2)+zbarz (i=sqrt(-1))

If (1+i)z=(1-i)phi z, then show that z=-iz

If |z - 1| = |z + 1| = |z - 2i|, then value of |z| is