Home
Class 12
MATHS
The argument of the complex number (1 +...

The argument of the complex number `(1 +i)^(4)` is

A

`135^(@)`

B

`180^(@)`

C

`90^(@)`

D

`45^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the argument of the complex number \((1 + i)^4\), we can follow these steps: ### Step 1: Express the complex number in polar form The complex number \(1 + i\) can be expressed in polar form. First, we need to find its modulus and argument. **Modulus:** \[ |1 + i| = \sqrt{1^2 + 1^2} = \sqrt{2} \] **Argument:** The argument \(\theta\) can be found using: \[ \theta = \tan^{-1}\left(\frac{\text{Imaginary part}}{\text{Real part}}\right) = \tan^{-1}\left(\frac{1}{1}\right) = \frac{\pi}{4} \] Thus, we can express \(1 + i\) in polar form as: \[ 1 + i = \sqrt{2} \left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right) \] ### Step 2: Raise to the power of 4 Now we need to raise this expression to the power of 4: \[ (1 + i)^4 = \left(\sqrt{2}\right)^4 \left(\cos\left(4 \cdot \frac{\pi}{4}\right) + i\sin\left(4 \cdot \frac{\pi}{4}\right)\right) \] Calculating \(\left(\sqrt{2}\right)^4\): \[ \left(\sqrt{2}\right)^4 = 2^2 = 4 \] Calculating the angle: \[ 4 \cdot \frac{\pi}{4} = \pi \] Thus, we have: \[ (1 + i)^4 = 4 \left(\cos \pi + i \sin \pi\right) \] ### Step 3: Simplify using trigonometric values Using the values of \(\cos \pi\) and \(\sin \pi\): \[ \cos \pi = -1, \quad \sin \pi = 0 \] So, \[ (1 + i)^4 = 4(-1 + 0i) = -4 \] ### Step 4: Find the argument of the resulting complex number The complex number \(-4\) can be expressed as: \[ -4 + 0i \] The argument of a complex number \(a + bi\) is given by: \[ \text{Argument} = \tan^{-1}\left(\frac{b}{a}\right) \] For \(-4 + 0i\): \[ \text{Argument} = \tan^{-1}\left(\frac{0}{-4}\right) \] Since the point \(-4\) lies on the negative real axis, its argument is: \[ \pi \quad \text{(or 180 degrees)} \] ### Final Answer Thus, the argument of the complex number \((1 + i)^4\) is: \[ \pi \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment (Section -B) (objective Type Questions ( one option is correct)|78 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment (Section -C) (objective Type Questions ( more thena one options are correct )|35 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE|Exercise Try Yourself|60 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE|Exercise SECTION - J ( Aakash Challengers Questions )|14 Videos

Similar Questions

Explore conceptually related problems

What is the argument of the complex number (-1-i) where i=sqrt(-1)?

The argument of the complex number z=(1+i sqrt3)(1+i) (costheta+isintheta) is

The argument of the complex number sin6(pi)/(5)+i(1+cos6(pi)/(5)) is