Home
Class 12
MATHS
If z = (-4 +2 sqrt3i)/(5 +sqrt3i), then...

If ` z = (-4 +2 sqrt3i)/(5 +sqrt3i)`, then the value of `arg(z)` is

A

`pi`

B

`pi/3`

C

`(2pi)/3`

D

`pi/4`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \arg(z) \) for the complex number \( z = \frac{-4 + 2\sqrt{3}i}{5 + \sqrt{3}i} \), we will simplify the expression and then calculate the argument. ### Step 1: Multiply by the Conjugate To simplify \( z \), we multiply the numerator and the denominator by the conjugate of the denominator. The conjugate of \( 5 + \sqrt{3}i \) is \( 5 - \sqrt{3}i \). \[ z = \frac{(-4 + 2\sqrt{3}i)(5 - \sqrt{3}i)}{(5 + \sqrt{3}i)(5 - \sqrt{3}i)} \] ### Step 2: Calculate the Denominator The denominator can be calculated using the difference of squares: \[ (5 + \sqrt{3}i)(5 - \sqrt{3}i) = 5^2 - (\sqrt{3}i)^2 = 25 - 3(-1) = 25 + 3 = 28 \] ### Step 3: Calculate the Numerator Now we calculate the numerator: \[ (-4 + 2\sqrt{3}i)(5 - \sqrt{3}i) = -20 + 4\sqrt{3}i + 10\sqrt{3}i - 6i^2 \] Since \( i^2 = -1 \), we have: \[ -20 + 14\sqrt{3}i + 6 = -14 + 14\sqrt{3}i \] ### Step 4: Combine the Results Now we can combine the results: \[ z = \frac{-14 + 14\sqrt{3}i}{28} = \frac{-14}{28} + \frac{14\sqrt{3}}{28}i = -\frac{1}{2} + \frac{\sqrt{3}}{2}i \] ### Step 5: Find the Argument The complex number \( z \) can be expressed in the form \( x + yi \) where \( x = -\frac{1}{2} \) and \( y = \frac{\sqrt{3}}{2} \). The argument \( \arg(z) \) is given by: \[ \arg(z) = \tan^{-1}\left(\frac{y}{x}\right) = \tan^{-1}\left(\frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}}\right) = \tan^{-1}(-\sqrt{3}) \] ### Step 6: Determine the Angle The angle \( \tan^{-1}(-\sqrt{3}) \) corresponds to an angle in the fourth quadrant. The reference angle for \( \sqrt{3} \) is \( \frac{\pi}{3} \), so: \[ \arg(z) = -\frac{\pi}{3} \] Since \( z \) is in the second quadrant (as \( x < 0 \) and \( y > 0 \)), we add \( \pi \) to the negative angle: \[ \arg(z) = \pi - \frac{\pi}{3} = \frac{3\pi}{3} - \frac{\pi}{3} = \frac{2\pi}{3} \] ### Final Result Thus, the value of \( \arg(z) \) is: \[ \arg(z) = \frac{2\pi}{3} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment (Section -B) (objective Type Questions ( one option is correct)|78 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment (Section -C) (objective Type Questions ( more thena one options are correct )|35 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE|Exercise Try Yourself|60 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE|Exercise SECTION - J ( Aakash Challengers Questions )|14 Videos

Similar Questions

Explore conceptually related problems

If z = (-2)/(1 + sqrt(3i)) , then the value of age z is

If z = sqrt(20i-21)+sqrt(21+20i) then the value of |arg z^(4)| is

If z=(3-i)/(2+i)+(3+i)/(2-i) then value of arg (zi) is

If z ,lies on the circle |z-2i|=2sqrt(2), then the value of arg((z-2)/(z+2)) is the equal to

If z(2-i2sqrt(3))^(2)=i(sqrt(3)+i)^(4), then amplitude of z is

For z= sqrt3-i , find the principal, value arg(z)

If z(2-2sqrt(3i))^(2)=i(sqrt(3)+i)^(4), then arg(z)=

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is