Home
Class 12
MATHS
If Z = (1+7i)/((2-i)^(2))then the polar...

If ` Z = (1+7i)/((2-i)^(2))`then the polar form of z is

A

`sqrt2(cos"(3pi)/4-isin"" (3pi)/4)`

B

`sqrt2(cos"(3pi)/4+isin"" (3pi)/4)`

C

`sqrt2(cos"(7pi)/4+isin"" (7pi)/4)`

D

`sqrt2(cos"(7pi)/4-isin"" (7pi)/4)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the polar form of the complex number \( Z = \frac{1 + 7i}{(2 - i)^2} \), we will follow these steps: ### Step 1: Calculate \( (2 - i)^2 \) First, we need to square the denominator: \[ (2 - i)^2 = 2^2 - 2 \cdot 2 \cdot i + i^2 = 4 - 4i + (-1) = 3 - 4i \] ### Step 2: Rewrite \( Z \) Now, we can rewrite \( Z \) using the result from Step 1: \[ Z = \frac{1 + 7i}{3 - 4i} \] ### Step 3: Rationalize the denominator To simplify \( Z \), we multiply the numerator and the denominator by the conjugate of the denominator: \[ Z = \frac{(1 + 7i)(3 + 4i)}{(3 - 4i)(3 + 4i)} \] ### Step 4: Calculate the denominator Now, calculate the denominator: \[ (3 - 4i)(3 + 4i) = 3^2 - (4i)^2 = 9 - 16(-1) = 9 + 16 = 25 \] ### Step 5: Calculate the numerator Next, calculate the numerator: \[ (1 + 7i)(3 + 4i) = 1 \cdot 3 + 1 \cdot 4i + 7i \cdot 3 + 7i \cdot 4i = 3 + 4i + 21i + 28i^2 \] Since \( i^2 = -1 \): \[ = 3 + 25i - 28 = -25 + 25i \] ### Step 6: Combine results Now, combine the results: \[ Z = \frac{-25 + 25i}{25} = -1 + i \] ### Step 7: Convert to polar form To convert \( Z = -1 + i \) to polar form, we need to find the modulus \( r \) and the argument \( \theta \). 1. **Calculate the modulus \( r \)**: \[ r = |Z| = \sqrt{(-1)^2 + (1)^2} = \sqrt{1 + 1} = \sqrt{2} \] 2. **Calculate the argument \( \theta \)**: The argument \( \theta \) can be found using: \[ \tan(\theta) = \frac{\text{Imaginary part}}{\text{Real part}} = \frac{1}{-1} = -1 \] This corresponds to an angle in the second quadrant since the real part is negative and the imaginary part is positive. Therefore: \[ \theta = \pi - \frac{\pi}{4} = \frac{3\pi}{4} \] ### Step 8: Write in polar form Thus, the polar form of \( Z \) is: \[ Z = r(\cos \theta + i \sin \theta) = \sqrt{2} \left( \cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right) \] ### Final Answer The polar form of \( Z \) is: \[ Z = \sqrt{2} \left( \cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right) \] ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment (Section -C) (objective Type Questions ( more thena one options are correct )|35 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment (Section -D) Linked comprehension Type Questions|13 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment (Section -A) (objective Type Questions ( one option is correct)|47 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE|Exercise SECTION - J ( Aakash Challengers Questions )|14 Videos

Similar Questions

Explore conceptually related problems

Convert the complex number z=(i-1)/(cos(pi)/(3)+i sin(pi)/(3)) in the polar form.

If z=(1+7i)/((2-i)^(2)), then |z|=2(b)|z|=(1)/(2)c)amp(z)=(pi)/(4)(d) amp(z)=(3 pi)/(4)

If z=(2-i)/(1-i) the real part of z+(1)/(z)=?

If z=(2+i)/(1-i) the real part of z+(1)/(2)=?

If z_(1)=2-i, z_(2)=1+ 2i, then find the value of the following : (i) Re((z_(1)*z_(2))/(bar(z)_(2))) (ii) Im (z_(1)*bar(z)_(2))

If | (z - i)/(z + 2i)| = 1, |z| = 5/2 then the value of |z + 3i|

AAKASH INSTITUTE-COMPLEX NUMBERS AND QUADRATIC EQUATIONS-Assignment (Section -B) (objective Type Questions ( one option is correct)
  1. The sum of principal arguments of complex numbers 1+i,-1+isqrt3,-sqrt3...

    Text Solution

    |

  2. If z = cos"" pi/4+ isin (pi/6) ,then

    Text Solution

    |

  3. If Z = (1+7i)/((2-i)^(2))then the polar form of z is

    Text Solution

    |

  4. If a = cos theta + isin theta, b = cosphi + isinphi, c = cos psi + i s...

    Text Solution

    |

  5. The value of (i+sqrt3)^(100)+(i-sqrt3)^(100)+2^(100) is

    Text Solution

    |

  6. Which of the following is not true ?

    Text Solution

    |

  7. The complex number z1,z2 and z3 satisfying (z1 - z3)/(z2 - z3) = ( 1 -...

    Text Solution

    |

  8. Let a=i^i and consider the following statements S1: a=e^(-pi/2), S2:T...

    Text Solution

    |

  9. If z^(2)+z+1=0 then the value of (z+1/z)^(2)+(z^(2)+1/z^(2))^(2)+(z...

    Text Solution

    |

  10. If omega is an imaginary fifth root of unity, then find the value of l...

    Text Solution

    |

  11. If 1,alpha1,alpha2,alpha3,.........,alpha(3n) be the roots of the equt...

    Text Solution

    |

  12. If z(1),z(2),z(3),z(4) are two pairs of conjugate complex numbers, th...

    Text Solution

    |

  13. If |z-4 +3i| le 2 then the least and the greatest values of |z| are q

    Text Solution

    |

  14. If |z1|=2,|z2|=3,|z3|=4 and |2z1+3z2+4z3|=4 then the expression |8z2z3...

    Text Solution

    |

  15. If z1 = cos theta + i sin theta and 1,z1,(z1)^2,(z1)^3,.....,(z1)^(n-1...

    Text Solution

    |

  16. The area of the triangle whose vertices are represented by the complex...

    Text Solution

    |

  17. The maximum value of |z| where z satisfies the condition |z+(2/z)|=2 i...

    Text Solution

    |

  18. The value of (1-tan^2 15^@)/(1+tan^2 15^@) is

    Text Solution

    |

  19. both roots of the equation (x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0 are

    Text Solution

    |

  20. If log sqrt(3)((|z|^(2)-|z|+1)/(2+|z|))gt2, then the locus of z is

    Text Solution

    |