Home
Class 12
MATHS
If z^(2)+z+1=0 then the value of (z+1...

If `z^(2)+z+1=0` then the value of
`(z+1/z)^(2)+(z^(2)+1/z^(2))^(2)+(z^(3)+1/z^(3))^(2)+....+(z^(21)+1/z^(21))^(2)` is equal to

A

21

B

42

C

0

D

11

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( z^2 + z + 1 = 0 \) and find the value of \[ (z + \frac{1}{z})^2 + (z^2 + \frac{1}{z^2})^2 + (z^3 + \frac{1}{z^3})^2 + \ldots + (z^{21} + \frac{1}{z^{21}})^2, \] we will follow these steps: ### Step 1: Find the roots of the equation \( z^2 + z + 1 = 0 \) Using the quadratic formula: \[ z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{-1 \pm \sqrt{-3}}{2} = \frac{-1 \pm i\sqrt{3}}{2}. \] Thus, the roots are: \[ z_1 = \frac{-1 + i\sqrt{3}}{2}, \quad z_2 = \frac{-1 - i\sqrt{3}}{2}. \] These roots can be recognized as the cube roots of unity, specifically \( \omega \) and \( \omega^2 \), where \( \omega = e^{2\pi i / 3} \). ### Step 2: Calculate \( z + \frac{1}{z} \) For \( z = \omega \): \[ \frac{1}{z} = \frac{1}{\omega} = \omega^2. \] Thus, \[ z + \frac{1}{z} = \omega + \omega^2 = -1. \] ### Step 3: Calculate \( z^2 + \frac{1}{z^2} \) Using the identity: \[ z^2 + \frac{1}{z^2} = (z + \frac{1}{z})^2 - 2 = (-1)^2 - 2 = 1 - 2 = -1. \] ### Step 4: Calculate \( z^3 + \frac{1}{z^3} \) Using the identity: \[ z^3 + \frac{1}{z^3} = (z + \frac{1}{z})(z^2 + \frac{1}{z^2}) - (z + \frac{1}{z}) = (-1)(-1) - (-1) = 1 + 1 = 2. \] ### Step 5: Generalize for \( z^n + \frac{1}{z^n} \) For \( n \geq 1 \): - If \( n \equiv 0 \mod 3 \): \( z^n + \frac{1}{z^n} = 2 \) - If \( n \equiv 1 \mod 3 \): \( z^n + \frac{1}{z^n} = -1 \) - If \( n \equiv 2 \mod 3 \): \( z^n + \frac{1}{z^n} = -1 \) ### Step 6: Calculate the sum The series \( (z^n + \frac{1}{z^n})^2 \): - For \( n \equiv 0 \mod 3 \): \( (2)^2 = 4 \) - For \( n \equiv 1 \mod 3 \): \( (-1)^2 = 1 \) - For \( n \equiv 2 \mod 3 \): \( (-1)^2 = 1 \) ### Step 7: Count the terms from \( n = 1 \) to \( n = 21 \) The sequence from 1 to 21 has: - 7 terms where \( n \equiv 0 \mod 3 \) (3, 6, 9, 12, 15, 18, 21) - 7 terms where \( n \equiv 1 \mod 3 \) (1, 4, 7, 10, 13, 16, 19) - 7 terms where \( n \equiv 2 \mod 3 \) (2, 5, 8, 11, 14, 17, 20) ### Step 8: Calculate the total sum \[ S = 7 \cdot 4 + 7 \cdot 1 + 7 \cdot 1 = 28 + 7 + 7 = 42. \] ### Final Answer The value of \[ (z + \frac{1}{z})^2 + (z^2 + \frac{1}{z^2})^2 + (z^3 + \frac{1}{z^3})^2 + \ldots + (z^{21} + \frac{1}{z^{21}})^2 = 42. \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment (Section -C) (objective Type Questions ( more thena one options are correct )|35 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment (Section -D) Linked comprehension Type Questions|13 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment (Section -A) (objective Type Questions ( one option is correct)|47 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE|Exercise SECTION - J ( Aakash Challengers Questions )|14 Videos

Similar Questions

Explore conceptually related problems

If z^(2)-z+1=0, then the value of (1)/(12)[(z+(1)/(z))^(2)+(z^(2)+(1)/(z^(2)))^(2)+(z^(3)+(1)/(z^(3)))^(2)+.........(x^(24)+(1)/(z^(24)))^(2)] is equal to

Suppose z satisfies the equation z^(2) + z + 1 = 0."Let" omega = (z+(1)/(z))^(2) + (z^(2) + (1)/(z^(2)))^(2) + (z^(3) + (1)/(z^(3)))+...+(z^(9) + (1)/(z^(9)))^(2) then |omega + sqrt(301) i| is equal to ____________

If z^(2)+z+1=0 where z is a complex number, then the value of (z+(1)/(z))^(2)+(z^(2)+(1)/(z^(2)))^(2)+...+(z^(6)+(1)/(z^(6)))^(2) is

If z=(1)/(2)(i sqrt(3)-1), then find the value of (z-z^(2)+2z^(3))(2-z+z^(2))

If |z_(1)|=1,|z_(2)|=2, then value of |z_(1)+z_(2)|^(2)+|z_(1)-z^(2)|^(2) is equal to

If |z_(1)|=1,|z_(2)|=2,|z_(3)|=3 ,then |z_(1)+z_(2)+z_(3)|^(2)+|-z_(1)+z_(2)+z_(3)|^(2)+|z_(1)-z_(2)+z_(3)|^(2)+|z_(1)+z_(2)-z_(3)|^(2) is equal to

|z_(1)|=|z_(2)| and arg((z_(1))/(z_(2)))=pi, then z_(1)+z_(2) is equal to

Let z_(1) and z_(2) be two given complex numbers such that z_(1)/z_(2) + z_(2)/z_(1)=1 and |z_(1)| =3 , " then " |z_(1)-z_(2)|^(2) is equal to

AAKASH INSTITUTE-COMPLEX NUMBERS AND QUADRATIC EQUATIONS-Assignment (Section -B) (objective Type Questions ( one option is correct)
  1. The complex number z1,z2 and z3 satisfying (z1 - z3)/(z2 - z3) = ( 1 -...

    Text Solution

    |

  2. Let a=i^i and consider the following statements S1: a=e^(-pi/2), S2:T...

    Text Solution

    |

  3. If z^(2)+z+1=0 then the value of (z+1/z)^(2)+(z^(2)+1/z^(2))^(2)+(z...

    Text Solution

    |

  4. If omega is an imaginary fifth root of unity, then find the value of l...

    Text Solution

    |

  5. If 1,alpha1,alpha2,alpha3,.........,alpha(3n) be the roots of the equt...

    Text Solution

    |

  6. If z(1),z(2),z(3),z(4) are two pairs of conjugate complex numbers, th...

    Text Solution

    |

  7. If |z-4 +3i| le 2 then the least and the greatest values of |z| are q

    Text Solution

    |

  8. If |z1|=2,|z2|=3,|z3|=4 and |2z1+3z2+4z3|=4 then the expression |8z2z3...

    Text Solution

    |

  9. If z1 = cos theta + i sin theta and 1,z1,(z1)^2,(z1)^3,.....,(z1)^(n-1...

    Text Solution

    |

  10. The area of the triangle whose vertices are represented by the complex...

    Text Solution

    |

  11. The maximum value of |z| where z satisfies the condition |z+(2/z)|=2 i...

    Text Solution

    |

  12. The value of (1-tan^2 15^@)/(1+tan^2 15^@) is

    Text Solution

    |

  13. both roots of the equation (x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0 are

    Text Solution

    |

  14. If log sqrt(3)((|z|^(2)-|z|+1)/(2+|z|))gt2, then the locus of z is

    Text Solution

    |

  15. If arg z = pi/4 ,then

    Text Solution

    |

  16. The z^2 + z|z| + |z|^2 = 0, then locus of Z is

    Text Solution

    |

  17. The least value of p for which the two curves argz=pi/6 and |z-2sqrt(...

    Text Solution

    |

  18. Re((z+4)/(2z-1)) = 1/2, then z is represented by a point lying on

    Text Solution

    |

  19. If f(x) and g(x) are two polynomials such that the polynomial h(x)=xf(...

    Text Solution

    |

  20. The value of (x+omega+omega^(2)) (x +omega^(2)+omega^(4))(x +omega^(...

    Text Solution

    |