Home
Class 12
MATHS
(1+x)^(n)=a(0)+a(1)x+a(2)x^(2) +......+a...

`(1+x)^(n)=a_(0)+a_(1)x+a_(2)x^(2) +......+a_(n)x^(n)` then
Find the sum of the series ` a_(0) +a_(2)+a_(4) +……`

A

`2^(n)`

B

`2^(n-1)`

C

2

D

`2^(n -2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of the coefficients of the even powers of \(x\) in the expansion of \((1+x)^n\). The coefficients are represented as \(a_0, a_2, a_4, \ldots\). ### Step-by-Step Solution: 1. **Understanding the Binomial Expansion**: The expansion of \((1+x)^n\) is given by: \[ (1+x)^n = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n \] where \(a_k = \binom{n}{k}\) for \(k = 0, 1, 2, \ldots, n\). 2. **Finding the Sum of Even Coefficients**: We want to find \(S = a_0 + a_2 + a_4 + \ldots\). 3. **Substituting \(x = 1\)**: First, substitute \(x = 1\) into the expansion: \[ (1+1)^n = 2^n \] This gives us the sum of all coefficients: \[ S_{\text{total}} = a_0 + a_1 + a_2 + \ldots + a_n = 2^n \] 4. **Substituting \(x = -1\)**: Next, substitute \(x = -1\): \[ (1-1)^n = 0 \] This gives us: \[ S_{\text{total}} - (a_1 + a_3 + a_5 + \ldots) = 0 \] or, \[ S_{\text{total}} = a_0 + a_2 + a_4 + \ldots - (a_1 + a_3 + a_5 + \ldots) \] Therefore, we can express this as: \[ 2^n = S + (a_1 + a_3 + a_5 + \ldots) \] 5. **Combining the Two Equations**: Let \(E\) be the sum of even coefficients \(S\) and \(O\) be the sum of odd coefficients: \[ E + O = 2^n \quad \text{(1)} \] \[ E - O = 0 \quad \text{(2)} \] 6. **Solving the System of Equations**: From equation (2), we have: \[ E = O \] Substitute \(O\) in equation (1): \[ E + E = 2^n \implies 2E = 2^n \implies E = \frac{2^n}{2} = 2^{n-1} \] 7. **Conclusion**: Thus, the sum of the series \(a_0 + a_2 + a_4 + \ldots\) is: \[ \boxed{2^{n-1}} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE|Exercise Assertion -Reason Type Questions|19 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE|Exercise Section-F ( Matrix -Match type Question)|10 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment (Section -C) (objective Type Questions ( more thena one options are correct )|35 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE|Exercise SECTION - J ( Aakash Challengers Questions )|14 Videos

Similar Questions

Explore conceptually related problems

(1+x)^(n)=a_(0)+a_(1)x+a_(2)*x^(2)+......+a_(n)x^(n) then prove that

If (1 + x + x^(2) + x^(3))^(n)= a_(0) + a_(1)x + a_(2)x^(2) + a_(3) x^(3) +...+ a_(3n) x^(3n) , then the value of a_(0) + a_(4) +a_(8) + a_(12)+….. is

Given that (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+......+a_(2n)x^(2n) , find the values of a_(0)^(2)-a_(1)^(2)+a_(2)^(2)-a_(3)^(2)+....+a_(2n)^(2)

Given that (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+......+a_(2n)x^(2n) , find the values of a_(0)-a_(1)+a_(2)-a_(3)......+a_(2n) ,

Given that (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+.......+a_(2n)x^(2n) find the value a_(0)+a_(1)+a_(2)+......+a_(2)n

If (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+......a_(2)nx^(2n) Find the value of a_(0)+a_(3)+a_(6)+......;!=psi lon N

If (1 + x+ 2x^(2))^(20) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(40) x^(40) . The value of a_(0) + a_(2) + a_(4) + …+ a_(38) is

If (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x_(2)+............+a_(2n)x^(2n) then the value of a_(1)+a_(4)+a_(7)+.......

If (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x_(2)+............+a_(2n)x^(2n) then the value of a_(2)+a_(5)+a_(8)+.......